
www.manaraa.com

www.manaraa.com

Managing Software Engineering

www.manaraa.com

Managing Software
Engineering

CASE studies and solutions

Alan C. Gillies

and

Peter Smith

1 U 111 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

www.manaraa.com

ISBN 978-0-412-56550-2 ISBN 978-1-4899-7188-3 (eBook)
DOI 10.1007/978-1-4899-7188-3

© Alan C. Gillies and Peter Smith 1994
Originally published by Chapman & Hall in 1994

First edition 1994

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the UK Copyright Designs and Patents
Act, 1988, this publication may not be reproduced, stored, or transmitted, in
any form or by any means, without the prior permission in writing of the
publishers, or in the case of reprographie reproduction only in accordance with
the terms of the Iicences issued by the Copyright Licensing Agency in the UK,
or in accordance with the terms of licences issued by the appropriate
Reproduction Rights Organization outside the UK. Enquiries concerning
reproduction outside the terms stated here should be sent to the publishers at the
London address printed on this page.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or Iiability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

00 Printed on permanent acid-free text paper, manufactured in
accordance with ANSIINISO Z39.48-1992 and ANSIINISO Z39.48-1984
(Permanence of Paper).

www.manaraa.com

Contents

Contents

1 Introduction

1.1 What the book is about
1.2 What' s in the book

PART ONE: THE STORY SO FAR

2 Abrief history of software

2.1 The dark ages
2.2 The engineering approach
2.3 The advent of software engineering
2.4 The software life cyde
2.5 The role of methodology
2.6 The role of CASE
2.7 Summary
Further reading

PART TWO: WHERE ARE WE NOW?

3 The DTI SOLUTIONS Programme (1989-91)

lohn A. Kirkham

v

1

1
1

3

5

5
7
8

11
16
21
24
25

27

29

3.1 Introduction 29
3.2 Strategy 29
3.3 The take up of SE methods and CASE tools 33
3.4 Analysis of 'achievements with software engineering' events* 34
3.5 Analysis of 'IT for competitive advantage' events 36
3.6 Critical success factors 39
3.7 Condusions 41
Acknowledgements 41
Further information 41

www.manaraa.com

vi Contents

4 CASE usage in the UK, 1991

4.1 The uptake of CASE
4.2 Problems and difficulties
4.3 Conc1usions
4.4 Summary
Further reading

5 Methods come before tools

5.1 Introduction
5.2 The importance of methods
5.3 Case studies
5.4 Summary
Further reading

6 Evolutionary not revolutionary change

6.1 Introduction
6.2 Management of change
6.3 Case studies
6.4 Summary
Further reading

7 People matter

7.1 The stakeholders
7.2 Case studies
7.3 Summary
Further reading

8 Consultants can help

8.1 Consultants: who needs them?
8.2 The role of the consultant
8.3 Case studies
8.4 Summary
Further reading

9 The long term view

9.1 The need for the long term view
9.2 Reducing the time to benefits
9.3 Case study
9.4 Summary
Further reading

42

42
46
48
49
50

53

53
53
62
71
72

73

73
73
81
88
89

90

90
101
107
108

109

109
110
115
128
129

130

130
137
143
149
150

www.manaraa.com

Contents vii

10 The problem with existing systems 151

10.1 Existing systems 151
10.2 Reverse engineering 157
10.3 Case study 164
10.4 Summary 166
Further reading 167

11 Serving the business needs 168

11.1 The IT culture gap 168
11.2 The IT strategy 171
11.3 Case and the IT strategy 173
11.4 Pro vi ding a better service 177
11.5 Case study 182
11.6 Summary 185
Further reading 186

12 CASE is just part of the process 187

12.1 CASE and the process of producing software 187
12.2 The use of continuous improvement techniques in software 188
12.3 The role of standards: IS09000 and TickIT 196
12.4 Case studies 204
12.5 Summary 209
Further reading 210

13 When it works

13.1 Introduction
13.2 Reasons for success
13.3 Problems
13.4 Case studies
13.5 Summary

14 Final thoughts

Bibliography

References
Further reading

Index

211

211
211
212
216
226

228

229

229
233

238

www.manaraa.com

1

Introduction

1.1 WHAT THE BOOK IS ABOUT

This book is about building computer software. The aim of the book is to
highlight the lessons from previous experience. Thus, you will not find
detailed descriptions of specific methods and tools such as SSADM or
Excelerator here. Instead, the book will describe other people's
experiences in software development and try to distil some of the
knowledge that they have gained.

The main hypothesis underpinning the text is that although software
development methods and supporting tools have become more technically
sophisticated, the management knowledge required has failed to keep
pace. Further, technically sophisticated tools and proprietary
'methodologies' have been presented by suppliers as substitutes for
sound project management practice.

Thus, the book will emphasize the importance of managing the
software development process and suggest that modern methods and
tools place a greater emphasis upon sound management practice rather
than less.

1.2 WHAT'S IN THE BOOK

The book is arranged as a chronological tale from the origins of software
engineering up to the present and looking to the future. However, the
book is divided in three sections to assist the reader in finding the
material that they require:

www.manaraa.com

2 Introduction

• Part One deals with the historical development of software
engineering. It describes the development of the principal ideas in
software engineering and outlines how we have arrived at the current
situation.

• Part Two describes the state of Computer Aided Software Engineering
(CASE) in the UK up to 1991, based upon two major studies. The first
is the DTI Solutions programme organized by Salford University
Business Services Limited. The aim of this programme was to raise
the awareness of CASE methods and tools amongst small and medium
sized companies. In the process, the SOLUTIONS team collected a
valuable collection of experiences from companies who have
implemented software methods and tools. Many of these are presented
in this text as case studies illustrating the later chapters of the book.
The report on this study has been kindly contributed by John Kirkham
of the IT Institute, Salford, who was director of the Solutions
programme. The second study was a survey of the uptake of CASE in
the UK carried out by the University of Sunderland. The survey
highlighted that many companies had experienced problems in making
practical use of the methods and tools.

• Part Three draws upon the findings of the two studies. It attempts to
draw out the lessons to be leamt from the experiences of the
companies contacted by the two studies. Each chapter focuses upon a
specific aspect of developing software and is based upon a central
principle.

The book is intended for a broad audience since the authors believe that
both technical and management personnel must recognize the need for
managing the software process. However, the organization into distinct
parts is intended to cater for different readers' needs.

For the student, at undergraduate or postgraduate level, it is suggested
that they will benefit from reading the whole text, since Part One
provides a foundation for Part Two, and Part Three is based upon the
findings of the studies in Part Two.

However, technical people already familiar with the history of
software development may wish to start reading at Part Two. Those
wishing to find out more about managing the software process or whether
other people have experienced the same problem that they face may
confine their attentions to Part Three.

www.manaraa.com

PARTONE

THE STORY SO FAR

www.manaraa.com

2

Abrief history of software

2.1 THE DARK AGES

In the early days of computers, programming was considered to be
something of a black art, performed by mad scientists who were clever
enough (and probably mad enough) to program these strange beasts of
technology known as computers. These scientists sat for endless hours
ploughing through strange computer codes known as programs which
were, undoubtedly, incomprehensible to anyone but themselves. These
early programmers did not follow any methods or mIes when
constructing their programs; rather they applied their high intellects to the
problem in a way that lesser mortals could not be expected to achieve.

The truth of the matter was that programming was difficult in those
times, not least because of the fact that, in the very early days, no real
programming languages existed. However, languages such as FORTRAN
and COBOL soon did emerge, but they were not accompanied by any
disciplined or formalized approaches to software development. In
addition, there were no effective tools available to help the prograrnmer
in his/her task.

Thus programs tended to be thrown together in a haphazard manner,
with no real attention being paid to trying to structure them. The prime
objective in those days was to produce a program that was efficient and
could be squeezed into as small an amount of computer storage as
possible, as at that time the cost of computer power was quite prohibitive.

This sort of approach seemed to work quite weIl, without causing too
many disasters for a number of years. As long as the mad scientists got
the right results (or rather, a set of results that appeared to be right) they
remained happy, and convinced that their program was correct. These
happy days were not, however, to last for long.

Soon managers, computer users and all sorts of people were
demanding, and indeed expecting, a lot more from the computer. They

www.manaraa.com

6 Abrief history of software

had had a taste of what the computer could do for them and wanted more.
At the same time, the programmers and their bosses were becoming more
imaginative and adventurous. Thus much more complex and large pieces
of software were being developed. Large operating systems for the new
generations of computers were being developed. However, no-one really
understood the best way to approach the development of such complex
software products. Nor did they have any tools that could help them put
together these pieces of software. As program size grew, so complexity
increased and the need to manage that complexity increased. In the
absence of appropriate tools and methods to manage complexity, the
number of errors began to accelerate and the cost of fixing those errors,
euphemistically referred to as 'maintenance', increased out of control.

This was the point at which real problems began to arise.

• Software projects were taking a lot longer to finish than originally
envisaged.

• Software was costing a lot more to develop than initially imagined.

• Software was being delivered to the customer only to fail (i.e. produce
incorrect results).

• Software projects were being abandoned because of disastrous
failures.

factor

---- Cost

Errors

/

/
Complexity

/

/ /' Size
./

time

Fig. 2.1 The software crisis.

www.manaraa.com

The engineering approach 7

In summary, software failures were costing an unacceptable amount
of money, and it was this that forced the software development
community to rethink their working practices. This became known as the
'software crisis'. The proposed solution was to borrow ideas about
systematic development from another discipline, that of engineering.

2.2 THE ENGINEERING APPROACH

The term 'software engineering' was first coined in the late 1960s for the
application of ideas on systematic development from engineering
disciplines. Let us consider first a problem from civil engineering.

Consider a gang of labourers who have had no training in bricklaying,
plumbing, electrical work, or any of the activities needed to build a
house. This gang of labourers have, however, managed to fumble their
way through building a few small houses. The houses don't look great
and may not be very comfortable: but at least they don't fall down and
you can live in them. The leader of the gang is confident that they can
build houses and feels that the time is right to attempt a more ambitious
project.

On Monday moming, without any warning, the leader informs the
gang that they are going to build a skyscraper. The gang start piling bricks
on top of each other, without any real thought about what they are doing.
Soon they are running into real difficulties, as the skyscraper begins to
wobble about, and ultimately it crashes to the ground!

This is, of course, an example of how not to go about constructing a
building (or indeed anything else). A true engineer (because it is
engineering that we are discussing) would surely approach the problem in
a much more systematic and professional manner. They would use
methods, techniques, standards and tools to aid in the production process.

The type of disaster described above is, however, the very situation
which had arisen in the software industry. A number of largely untrained
(or, at the best, self-trained) programmers would attempt to throw
together a very large and complex piece of software without following
any rules or guidelines, or attempting to apply any real methods. They
would not plan out their work to any great extent, nor would they make
any real estimate of the consequences of their actions. What is being
described is, of course, a recipe for dis aster - and that is exactly what
happened in a large number of instances. It is this scenario that leads us
to the emergence of the concept of software engineering.

www.manaraa.com

8 Abrief history 0/ software

2.3 THE ADVENT OF SOFTWARE ENGINEERING

The purpose of software engineering is dear. It may be defined as:

'The application of traditional engineering approaches to the
development of software' .

In practice, the engineering approach is characterized principally by
the application of a systematic method to the problem in hand. A general
engineering method which all engineers might recognize would indude:

• establishment of dear goals;

• a dear plan, breaking down the overall problem into a set of simpler
tasks;

• use of a systematic method to control and manage the project;

• use of suitable tools to support the process;

• evaluation and monitoring of the process;

• testing of the materials used and the product.

Within the overall sphere of engineering there are many distinct
disciplines, such as civil, mechanical, electrical and chemical. What they
share is an overall systematic approach to problems in the same way that
a chemist, biologist or physicist would recognize that they have scientific
method in common.

However, the difference between most engineering disciplines is
small when compared to the differences between physical engineering
disciplines and software engineering.

The cmcial characteristic of software is its intangibility. Y ou cannot
hit software with a hammer. More importantly, perhaps, you cannot
measure it with a mier or micrometer or adjust it with a screwdriver.
Much of engineering theory and practice depends upon measurement.
Software measures are at best very cmde and much Iess objective than
their counterparts in other engineering disciplines:

www.manaraa.com

The advent of software engineering 9

D
Fig. 2.2 Software cannot easily be measured.

Nevertheless, it is still a product; an item which humans make. The
idea behind software engineering is, then, that software should be
engineered, in as professional a manner as a civil engineer might
construct a bridge or an automotive engineer might construct a car.

In particular, software engineering implies the use of tools, techniques
and methods for the production of quality software. That is, the software
engineer must approach the construction of their product, software, in a
professional manner. Their work should, therefore, involve adherence to
standards, quality control procedures and professional practices. Software
production should be carefully managed from the highest level with each

www.manaraa.com

10 Abrief history of software

software engineer dear of their own responsibilities and taking a pride in
their work.

All of this is, of course, a very fine ideal. When these ideas were
proposed they certainly seemed a long way from reality. Everyone agreed
that it would be wonderful if software engineers could adhere to such
practices; few people had the vision to imagine how this rnight be
achieved.

It was difficult (and still is) to imagine or predict the answers to the
following questions:

• How do you measure the quality of software?

• How can you provide tools to aid in software construction?

• How can you plan complex software projects?

• How can you devise methods to aid in software design?

The past two decades have seen much research effort (and money) go
into answering the above, and other, important questions in the field of
software engineering. We have undoubtedly come a long way in that
period and many methods, tools and techniques have arisen. CASE tools
are one very important part of this scenario.

Some of these methods and tools are now in wide usage in business
and commerce; others are still very much at the research stage. One thing
is, however, without question - software development has been raised
from what was a somewhat haphazard cottage industry into a professional
discipline. Whether it is worthy of the title 'Software Engineering' is still
a matter for some debate; but the term is now in common usage.

The concept of professionalism is at the very heart of software
engineering, and CASE tools must, if they do anything useful at all, raise
the level of professionalism in the software development community. In
the UK, members of computing's professional body can now apply for
chartered status, which signifies their recognition as a professional
engineer. Some people, induding traditional engineers in other
disciplines, would, however, argue that computing is still too immature a
discipline to warrant being termed 'engineering' and that there are still
too few methods, tools, techniques and quality assurance procedures
being applied in industry and commerce.

The process of software engineering is dealt with comprehensively in
a text by Sommerville (1989).

www.manaraa.com

The software life cycle 11

2.4 THE SOFfW ARE LIFE CYCLE

At the heart of any engineering proeess is a systematie proeedure
eonsisting of a number of stages from initial eoneeption through to the
final finished artide. These stages are eommonly termed the software life
eyde. The primary role of CASE tools is to support and automate all or
part of the life eyde. The stages in the software life eyde are:

• Analysis

• Design

• Implementation (Coding)

• Testing

• Installation

• Maintenanee.

Eaeh of these stages must be managed, doeumented and validated.
Eaeh stage of the software life eyde will be eonsidered in more detail

below.

2.4.1 Analysis

This stage eonsists of analysing the user' s problems, and is one of the
most diffieult, ereative and intuitive stages in the software development
proeess. It is also one of the most diffieult areas to automate and, henee,
is less well supported by eurrent tools than later stages of the life eyde.

The questions to be answered at this stage may indude:

• What is the real problem to be solved?

• What do the potential users of the software need?

• What computer and programs are needed?

• What data is to be used?

• What results are to be presented?

www.manaraa.com

12 Abrief history of software

• How are they to be presented?

This stage will involve extensive discussions and consultations with
the people who are going to use the software in the future. The best
which current tools can do is to support certain aspects of this process, by
helping the systems analyst to produce diagrammatic models of the
systems and to check the consistency of these models as they are
successively refined. The output of this stage will be a detailed
specification that will describe exactly:

• the inputs and outputs of the system;

• the hardware and software to be used;

• the functions to be performed by the system;

• the form and structure of the user interface (i.e. how the system is to
interact with its users).

The ideal tool would be able to generate automatically such system
elements. One of the most useful applications of tools in support of the
analysis process is through the use of prototyping to allow users to see the
implications of their specific requirements.

Methods and tools have been developed by a number of authors to
assist in this process, and the reader is referred to Chapters 3 to 6 of
Sommerville's (1989) book for further details.

2.4.2 Design

This stage entails the design of the software. Here the software engineers
will decide how many pro grams need to be written and describe their
overall structure.

The major concept underpinning methods and tools for design is
structuredness. The idea behind structuredness is to break down the
overall problem into a set of simpler tasks. In so doing the process
imposes organization onto the problem.

The inputs to this stage of development are the requirements
described in the analysis phase. The purpose of this stage is to formalize
the requirements into a design, usually expressed as a hierarchical
structure of some form:

www.manaraa.com

requirements

from analysis

Formal design specification

Fig. 2.3 The design process (schematic).

The software lifecycle 13

The output from this stage may be expressed in the form of diagrams
or text, generally known as a design description language. Increasingly
the influence of graphically based tools is switching the emphasis to
diagram-based techniques.

The c1assic methods of structured design were pioneered by authors
such as Constantine and Yourdon (1979) and Jackson (1975, 1983).

2.4.3 Implementation

The implementation (or coding) stage involves taking the software design
and converting it into the instructions of a programming language,
typically in the past this would have been COBOL for business
applications and FORTRAN for scientific applications.

However, the growth of structured methods has led to the growth of
languages which encourage structured programming such as Pascal and
more significantly C and ADA.

In business applications, the use of so-called fourth generation
languages (4GL) has become increasingly popular, in order to increase

www.manaraa.com

14 Abrief history of software

productivity and ease interaction with a database system. Some of these
are dosely linked to tools to support the rest of the development process
such as ORACLE' s proprietary 4GL and CASE too1.

The future of implementation will depend increasingly upon the
automatic generation of code from design specifieation. Coding is not
essentially a creative process and the most important feature is to
consistently mirror the design specification. Thus this is a task well suited
to automation.

However, the current generation of tools have limitations and many
tools offer only partial code generation. Jackson (1983) describes the
principles of structured programming. There is little published literature
regarding automatie code generation as yet, but this topie is discussed in
Part Three.

2.4.4 Testing

Any quality product is only of high quality if it has been subject to
rigorous quality assurance procedures. This entails testing the software as
rigorously as possible to ensure that it performs according to
specification. As well as testing the product at this late stage, checks and
reviews should be built into the software life cyde at every stage. CASE
tools can help in this process, in that they can check that as the system is
being designed the models that are being developed are consistent with
previous views of the system and its domain.

Boehm (1981) highlights the rising cost of error detection throughout
the software life cyde. This is illustrated in Fig. 2.4.

Thus, testing and validation must be carried out throughout the
software life cyde to detect as many errors as possible at an early stage.
CASE tools can assist by providing consistency checks at all stages of the
life cyde. A das sie text on software testing is provided by Myers (1979).

2.4.5 Installation

Once the software has been fully tested it should be instalied on the
user' s computer. This can be a relatively simple process for small pieces
of software, but may be much more complicated for larger, more complex
systems. It mayaiso involve training the users of the software exactly
how to operate it. The software should also be accompanied by manuals
to tell the users how to operate it.

www.manaraa.com

The software lifecycle 15

Log (cost)

Analysis Design Coding Tesling Operation

Fig. 2.4 The cost of fixing eITors (after Boehm, 1981).

In theory, CASE tools can help in the generation ofboth user and technical
documentation. In practice, many tools generate much material relevant to
documentation in an unhelpful form.

2.4.6 Maintenance

Now that the software has been installed, it must be maintained. This
entails correcting any bugs that the users may subsequently find in the
software and ensuring that it continues to work correctly in the future.

This mayaiso involve updating the software to meet new user
requirements and changes in the environment in which the software
operates. Although CASE cannot help directly in the maintenance
process, the use of CASE in software development can help produce
more maintainable code.

Since it is alleged that most maintenance arises from badly designed
software that does not meet users' requirements effectively, the use of
better analysis and design methods and tools should reduce the
maintenance required substantially.

www.manaraa.com

16 Abrief history of software

This is the reason why CASE methods and tools are presented as a
solution to the software crisis. If they cannot do this, then they are being
sold to organizations under false pretences.

2.4.7 Continuous activities

Throughout the software life cyc1e it is necessary to ensure that:

• the software development process is tightly managed and controlled;

• each stage of the process is carefully documented;

• everything produced is validated, inc1uding preliminary designs,
documents, etc.

The use of a systematic method will help to ensure that these tasks are
carried out consistently and effectively. A CASE tool can help to increase
productivity by assisting in the production of documentation and
diagrams.

However, one of the greatest potential benefits arises from the sharing
of data between the different phases of development. A CASE tool uses a
central repository to store data and builds the data models required at
each stage from those developed in the previous stage.

2.5 THE ROLE OF METHODOLOGY

Often, the systematic collection of methods is gathered together into an
overall framework known as a 'methodology'. Strictly, methodology is
the study of method. However, in software terminology, the word has
come to mean a systematic framework for software development defining
aseries of stages within the software development life cyc1e and methods
within each stage to carry out the required tasks. Thus, within the
software community, a more realistic definition might be:

'A methodology is a framework for the systematic organization of a
collection of methods.'

These methodologies may be proprietary to a particular company, e.g.
Information Engineering from Texas Instruments, Govemment

www.manaraa.com

The role of methodology 17

sponsored, e.g. SSADM, or derived from academic study and within the
public domain.

Tools to assist in software development, known as Computer Aided
Software Engineering (CASE) tools, may be linked to a specific
methodology, e.g. the Information Engineering Facility (IEF) CASE tool
automates the Information Engineering Methodology (IEM), or may
automate generic methods found in many methodologies.

Software engineering was introduced to try to formalize the
development of software using ideas from other engineering disciplines.
The idea that has been pre-eminent ever since is the idea of
structuredness. The concept of structuredness is simply about breaking
down a large problem which cannot be dealt with easily, into aseries of
smaller problems which can. The development of systematic procedures
to produce structured code, which became known as 'methodologies',
was the first widespread attempt to take account of quality issues during
software development.

2.5.1 What is a methodology?

Lantz (1989) suggests that a methodology may be characterized by a
number of features:

• It can be taught. A methodology involves a collection of methods.
These may be ordered as a sequence of steps and the nature and order
of each step may be taught.

• It can be scheduled. The time and resources required to complete each
stage may be estimated and a project schedule drawn up accordingly.

• It can be measured. This schedule may be used to measure progress of
the plan.

• It can be compared. The use of the methodology within a specific
project may be compared with its use in another project, or with the
use of another methodology.

• It can be modified. Methodologies can be improved in the light of
experience. For example, SSADM (Structured Systems Analysis and
Design Methodology) is now in its fourth incarnation since its
adoption as a UK Govemment standard in 1981.

www.manaraa.com

18 Abrief history of software

Methodologies may be developed for all or part of the software
development process. Information systems development (ISD)
methodologies such as IBM (Information Engineering Methodology) are
concemed with the whole development process. SSADM is only directly
applicable to the design and analysis phases of the process.

In order to see how a methodology is applied, consider a methodology
for washing up. Washing up is a good application for a structured
methodology as it is often carried out in a haphazard fashion.

A 'best practice' approach might be considered in 13 phases,
described in Table 2.1 and illustrated in Fig. 2.5. This provides a rigorous
and systematic approach to washing up. Once a dear procedure is in
place, then we can put into operation aseries of reviews for quality
assurance. The process of washing up then becomes a systematic
sequential process.

At each stage, monitoring and evaluation are required to check the
effectiveness of the procedure. For example, in our washing up example,
the state of the washing up water is a critical factor in the success of each
stage. Therefore during each of the washing phases, ongoing monitoring
is required. Similarly, the amount and effectiveness of detergent is
another critical factor in the effectiveness of the overall process.

Where washing up and drying are carried out by two different people,
this allows for a natural QA process to be incorporated, since the drier
may reject items that are unsatisfactorily washed. However, the process
should be designed to minimize the number of items failing to meet the
required standard.

www.manaraa.com

The role of methodology 19

Table 2.1 Summary of washing up methodology

Procedure

Sort Washing Up Into
Categories

Clean Surfaces

Rinse Dishes

Wash Glasses

Wash Cutlery

Wash Crockery

Wash Pots & Pans

Dry Glasses, Dry Cutlery,
Dry Crockery, Dry Pots &
Pans

Put Away Dishes

Clean Up Sink Area &
Bowl

Description

This process sorts the washing up to be done into
categories of increasing dirtiness: glasses, cutlery,
crockery, pots and pans used for cooking. This
minirnizes transfer of dirt and the need for changes of
water. An inspection is required to ensure that all dishes
are sorted correctly.

In order to ensure clean dishes are not placed upon dirty
surfaces leading to re-soiling, the surface on which clean
dishes are to be placed should be inspected.

The soiled dishes should be rinsed to remove excessive
dirt. This should be subject to inspection, to ensure that
it has been carried out to the required standard.

The glasses should be washed first, in order to ensure
maximum cleanliness. All clean glasses should be
inspected to ensure that they are cleaned satisfactorily.

The cutlery should be washed next, in order to maximize
cleanliness. All clean cutlery should be inspected to
ensure that it has been cleaned satisfactorily.

After the cutlery, the crockery should be washed and
inspected for cleanliness.

Finally, the dirtiest items should be washed. After
washing they should be inspected.

The drying should be carried out in the same order. Each
phase is followed by an inspection.

The clean dishes should all be put away and this should
be checked.

Finally, the area used, the sink, draining boards and
bowl should be washed down and inspected. A final
report on the state in which the area has been left is
required to complete the process.

www.manaraa.com

20 Abrief history of software

Rinse Dishes

Wash Glasses

Wash Cutlery

Wash Crockery

Wash Pots & Pans

Dry Glasses

Dry Pots & Pans

Put Away

Clean Sink & Bowl

Fig. 2.5 A methodology for washing up.

www.manaraa.com

The role of CASE 21

A good methodology for software development has a number of
characteristics:

• Usability. It should be easy to use and have good support provided by
the vendor, since this is just as important to the long-term usability of
the product.

• 1ntegrity. A methodology should provide coverage of the whole life
cycle to ensure integrity throughout the process.

• Adaptability to local needs. Methodologies are necessarily restrictive
if they are to encourage good practice, but they should also be
adaptable to the needs of a particular environment.

• Clarity. Documentation is a critical and often neglected area. Good
documentation can be facilitated by the methodology and partly
generated by associated tools. The methodology itself should be
jargon-free and produce understandable output.

• Automation. Increasingly, methodologies are becoming automated
through the use of tools. A good methodology should lend itself to
automation.

The methodology is the basis for any CASE too1. Without a
systematic and appropriate procedure, automation will not solve any of
the software developers' problems.

2.6 THE ROLE OF CASE

Recent years have seen the advent of many software tools (Stobart,
Thompson and Smith, 1991a) to support the software development
process. Such tools are now given the generic name CASE (Computer
Aided Software Engineering). The use of these tools can not only
enhance productivity, by relieving the software engineer of some of the
more tedious tasks in software development, but it will also ensure
adherence to standards and, ultimately, increase quality.

Indeed, CASE tools have been promoted as one of the solutions that
will counter the problems of poor software quality and inadequate

www.manaraa.com

22 Abrief history of software

documentation. The successful use of CASE should also enhance and
improve software usability and maintainability.

CASE is the automation of existing software engineering methods and
practiees with the goal of improving both the quality of the product and
the efficiency of the software developers. Such automation is new within
the software engineering community; however, it has been applied for
some time in fields such as computer-aided design (CAD) and computer­
aided management (CAM), among others.

The automation of the software development life cycle requires the
creation of a set of tools that will assist in the production of high quality
software; ideally by automating every stage in the software development
process. In practice, however, CASE tools provide varying levels of
support throughout the software life cycle. That is, there is great diversity
in tool functionality, design and in the user interfaces whieh CASE tools
present to the software engineer. This situation has resulted in
considerable confusion surrounding the true definition of wh at exactly
constitutes a CASE tool.

CASE tools are now available to support and automate many stages of
software development including:

• generation of structure charts;

• automatie generation of program code from a structure chart;

• automatie generation of documentation;

• consistency checks;

• screen design; and

• testing and debugging.

Those CASE tools that automate analysis and design techniques such
as data flow diagramming, logieal data structures and entity-relationship
modelling are very different from those which automate the later stages
of software production such as code generation by structure charts and
the reuse of existing modules of code. Such differences have resulted in
the definition of various categories of CASE tool, as summarized in
Table 2.2 and Fig. 2.6:

www.manaraa.com

The role 0/ CASE 23

Table 2.2 Types of CASE tool

Description Also known as Scope

upper-CASE tools

rniddle-CASE tools

lower-CASE tools

integrated CASE tool

The Software lifecycle

front end

backend

autornate the earlier analysis-based
stages of the software life cycle

autornate the design-related stages of
software production

focus upon actual code generation

autornate the cornplete life cycle

Aequirements System & ~ 8
L... ____ ---J L...-,s",O""-ftw,,,a.:..:.r_e-J Goding Testing analysis desiQn

Operation
&

maintenance

Integrated GASE tools (IGASE)

e.g. Information En

Upper/Lower GASE tools

Upper GASE/Front end Lower GASE/Back end

e.g. Excelerator e.g. Telon

UpperlMiddlelLower GASE lools

Lower GASE/Back end

e.g. Telon
Fig. 2.6 Types of CASE too1.

www.manaraa.com

24 Abrief history of software

Thus, some tools facilitate analysis, some design and some both,
whilst others are concemed with generating code. However, the latest
generation of CASE tools are moving more and more towards the idea of
the integrated CASE tool that attempts to automate (or at least offer
support to) every stage of the software development life cyde. Some such
tools (or sets of tools) are now emerging. However, the majority of
current CASE technology focuses upon performing data consistency and
conformance checks and automating the process of managing and
documenting software production. This form of support enables software
engineers to concentrate more on the creative design aspects of software
fabrication.

Although there is currently little standardization in the CASE market,
and the take-up of CASE technology in industry still remains somewhat
low, it is still seen by many as an area of expansion for the future. The
use of CASE tools may, at the very least, be expected to lead to increases
in development productivity and the generation of quality software that
conforms more dosely to requirements.

Traditionally, CASE tools have focused around the data processing
area, with a wide selection of CASE technology being available to help in
the development of commercial software systems. In recent years,
however, tools have become available for many other application areas.

This is also an area that is likely to grow and expand in the coming
years.

2.7 SUMMARY

The main points of this chapter were:

• At a point in the historical development of computer systems, the
degree of complexity made existing ad hoc methods unacceptable.
This was known as the 'software crisis'.

• The proposed solution to the crisis was the application of engineering
ideas from other disciplines to software development. This became
known as 'software engineering' .

www.manaraa.com

Further reading 25

• The key ideas borrowed from engineering were establishment of clear
goals, a clear plan, breaking down the overall problem into a set of
simpler tasks, use of a systematic method to control and manage the
project, use of suitable tools to support the process, evaluation and
monitoring , testing.

• The resulting methods were known as 'structured methods' since they
broke the problem down to smaller tasks.

• The process was known as the 'software life cycle' and the collection
of methods required to carried it out became known as a
'methodology' .

• CASE tools have been designed to support and automate these
'methodologies' .

FURTHER READING

Sommerville, t (1989) Software Engineering, 3rd edn, Addison-Wesley

This book provides a comprehensive treatment of software
engineering. The references provided here refer to the 3rd edition,
although a 4th edition has recently been published.

Constantine, L.L. and Y ourdon, E. (1979) Structured Design, Prentice­
Hall, New York.

Jackson, M.A. (1975) Principles oj Program Design, Academic Press,
London.

Jackson, M.A. (1983) System Development, Prentice-Hall, New York.

Yourdon, E. (1975) Techniques oj Program Structure and Design,
Prentice-Hall, New York.

Yourdon, E. (1981) Modern Systems Analysis. Prentice-Hall, New York.

These books are classic tests from the development of structured
methods for the development of software.

www.manaraa.com

26 Abrief history of software

Fisher, A. (1991) CASE : Tools for Software Development, Wiley, New
York.

This text provides a gentle introduction to CASE tools combining
details of specific methods and tools with a readable style.

Gillies, A.c. (1992) Software Quality: Theory and management,
Chapman & Hall, London.

Chapters 6 and 10 discuss the relationship between CASE tools and
software quality.

www.manaraa.com

PARTTWO

WHERE ARE WE NOW?

www.manaraa.com

3

Tbe DTI SOLUTIONS Programme
(1989-91)

Jobn A. Kirkbam

3.1 INTRODUCTION

The SOLUTIONS programme was funded by the UK Department of
Trade and Industry (DTI) to raise the awareness of the business
community, particularly small to medium sized companies (SMEs), as to
the benefits of using software engineering methods and Computer Aided
Software Engineering (CASE) tools for developing Information Systems
(IS). The core component in the programme's strategy was the promotion
of 'best practices' derived from the experiences of other businesses. This
was achieved by adopting a three-pronged strategy:

• media coverage to create awareness;

• quarterly newsletters and an audio-visual presentation to provide
supporting information and ongoing commitment; and

• seminars and workshops to 'inform and educate' and to encourage
action.

3.2 STRA TEGY

The strategy identified two distinct target audiences and tailored its
messages accordingly.

The first target was the 'purse-holder and decision maker' - senior
managers whose influence and commitment would be needed to make an
information technology (IT) project successful. These key messages were

www.manaraa.com

30 The DT/ SOLUT/ONS programme (/989-91)

slanted to the business benefits of having a cost effective, properly
developed IT plan.

The second target was the IT professional: those who had the
responsibility for 'selling' IT internally and guaranteeing its credibility.
The key message was not just technical excellence but also the vital
importance of developing it as a profit-making component in the business
plan.

Fifty events (seminars, breakfast meetings and technical workshops)
were held throughout the country, attracting up to 100 participants on
occasion. Some specialist events attracted even greater participation; for
example, the sessions on real time systems and reverse engineering had
171 and 182 attendees respectively. The technical event for the IT
professional was called 'Achievements with Software Engineering' and
the management event was called 'IT for Competitive Advantage'. The
technical event lasted from 11:00 to 15:30 hours and had a common
introduction and conc1usion between which three to four demonstrators,
from a pool of twenty, gave presentations. The management event, called
a breakfast seminar, lasted from 08:00 to 09:00 and was followed by a
full English breakfast.

The format was a common introduction, an audio-visual presentation
followed by conc1usion and discussion. Ademonstrator in the breakfast
seminar usually presented in the technical event. The demonstrators
talked not only about the advantages but also the problems they had
experienced and how they had dealt with them. Other presentations were
given by experts recruited from other initiatives being run by the DTI
such as open systems and quality (TickIT).

The demonstrators played a crucial role in the success of the
programme. They were found in one of three ways:

• The quickest and most effective way was through personal contacts.
This enabled the programme to get off the ground quickly with people
who were known and trusted. This provided about one third of the
demonstrators.

• Vendors of methods and tools were contacted to see if they had any
c1ients who would be willing to talk at an event. There were two
methods of contact: a seminar was held in London, at which 40
vendors attended, and a letter was sent to any vendors who had not
attended the London meeting (100 letters in all). This avenue provided
another third of the demonstrators.

www.manaraa.com

Strategy 31

• The final approach was via the newsletter and those who attended the
event. These people saw an opportunity to further the image of their
company and themselves by speaking at SOLUTIONS events.

Once the contact had been made, one of the SOLUTIONS team was
assigned to that potential demonstrator. The demonstrator either visited or
discussions were conducted over the telephone and a two page summary
produced. This was then discussed with other summaries at the monthly
meeting with the DTI and suggestions made as to the content of the
presentation. If the demonstrator was suitable, then they were added to
the list.

Typically demonstrators were required who could relate their
experiences to a wide spread of medium size enterprise using a variety of
methods and tools. The type of software and hardware platforms was not
important as the key was raising awareness rather than giving detailed
technical advice. If the demonstrators satisfied these criteria and were
thought to be good presenters, then they were accepted.

Some demonstrators were not suitable or found that their employers
would not let them spend the time away from their work. The time spent
on these was not was ted as their experiences appeared in the newsletter
and on the audio tapes.

Once accepted, another discussion was held with the demonstrator to
determine the structure and general thrust of the presentation. The
presenter then prepared a first draft of the slides and supporting text.
These were then reviewed until all parties were happy. A formal
presentation was then held at Salford for two or three members of the
SOLUTIONS team. A constructive critical discussion was then held to
iron out any problems.

For the presentation it was feIt that the critical factors were as folIows.

• It should not be too technical, but rather aimed at senior managers
stressing the business benefits. This message would also be relevant to
the DPIIS managers who could use it as alever to obtain the methods
and tools to improve quality and productivity.

• The presentation must be interesting and stimulating.

• The presenter must be credible and professional.

• Slides must be simple and readable.

www.manaraa.com

32 The DT/ SOLUT/ONS programme (1989-91)

• The time for the presentation was critical, typically 30-35 minutes
with 5-10 minutes for questions and discussion.

• The presentation should fit the underlying message of the
SOLUTIONS programme.

The application of these procedures and criteria was reflected in the
high quality of the resulting presentations.

At all the events a questionnaire was distributed and attendees were
asked to fill it out before they left or post it from work. The aim of the
questionnaire was to find out their opinions of the event and whether they
would be investigating how they could use SE methods and CASE tools
in the future.

Eight quarterly newsletters were published and each circulated to
5000 named business executives. Readers surveyed showed 70% of the
recipients found the newsletter interesting, informative and relevant to
their companies. A slide-tape presentation was produced as a visual guide
to best practice in software development. At the end of the project a
'drive time' audio tape was produced, summarizing the key messages and
case studies of the SOLUTIONS programme. Extensive media coverage,
news items and feature articIes were secured in national, local, trade and
business media. Most of these were either based on case studies
(Solomonides et al., 1992) or dealt with the general proposition of the
need for properly planned and managed software development.

The main achievements of the programme can be summarized as
follows:

• Fifty management and technical events were completed;

• 2242 delegates representing 1867 companies attended;

• 77% of management seminar delegates were from SMEs, of which
47% were at director level and 32% line managers;

• 54% of technical workshop delegates were from SMEs, of which 12%
were executives and 27% DPIIT managers;

• Over 80% were motivated to take action following the events;

• Eight newsletters were published and distributed to 5000 companies;

www.manaraa.com

The takeup oi SE methods and CASE tools 33

• Over two-thirds of the attendees distributed the information to other
people in their company and over half investigated software
engineering (SE) methods and CASE tools.

3.3 THE TAKE UP OF SE METHOOS ANO CASE TOOLS

In contractual terms the project was a success. We attained, and in many
cases exceeded, the attendance targets set by the OTI. The analysis of the
questionnaires after the events showed that most delegates feIt the effort
of attendance was worthwhile. However, the fundamental question is:

'Oid the seminars manage to raise the delegates interest so that some
action was initiated?'

A questionnaire was sent out six to nine months after the event took
place. The purpose of the questionnaire was to decide, after the first flush
of enthusiasm, whether the attendees' organizations had started to adopt
SE methods and CASE tools. In other words had we raised their
awareness to such an extent that they had investigated the use of SE
methods and CASE tools in their organization. The choice of follow-up
after six to nine months was purely pragmatic. It was feIt that by this time
the organizations would at least have started a study and may even have
had the results and started implementation. Leaving the survey any longer
increased the chances of the participants forgetting the SOLUTIONS
event and meant that the OTI would not have the results of the feedback
into their other programmes.

The questionnaire was individually addressed and printed on coloured
paper to make it stand out against other printed material on the recipient' s
desk. As the questionnaires were retumed they were logged. After
approximately four weeks those who did not reply were sent another
questionnaire. The first mailing produced most of the replies. Three
hundred and forty replies were received for the attendees of the
'Achievements with Software Engineering' and 194 replies were received
for the 'IT for Competitive Advantage' event.

www.manaraa.com

34 The DT/ SOLUT/ONS programme (1989-91)

3.4 ANALYSIS OF 'ACHIEVEMENTS WITH SOFTWARE
ENGINEERING' EVENTS*

Not all the questions will be discussed; only the ones considered pertinent
to the question, 'Did the organization do anything conceming SE
methods and tools after the event?' In other words, was awareness raised
to such an extent that the delegates initiated some action in their
organization?

Rather surprisingly 45% of the organizations attending the event were
already using SE methods. Perhaps they were coming to see what other
people, the demonstrators and their competitors, were doing. We don't
think that they misunderstood the reason for the event as delegates were
generally satisfied with the event. After the event 50% of the delegates
who had not previously used SE methods were persuaded to investigate
such methods. They did this by obtaining further information from a
variety of sources such as the National Computing Centre, supplier
literature, training seminars and further research of an unspecified type.
Some mentioned seeking management approval for finance, but nobody
launched straight into use. Of those that did not do anything, 56%
thought it not relevant, 21 % their organization was too small and 23% the
time was not ripe but may look at it 1ater. The smal1 organizations were
usually consu1tants who were filling in gaps in their knowledge. They
were also on the look out for c1ients and usually prefaced their question
with 'I am lohn lones, a consultant, and wou1d like to ask the following
question .. .'

Thirty-one per cent of the organizations were already using CASE
too1s. The reasons for this were similar to those for SE methods; they
were coming to see what other peop1e, the demonstrators and their
competitors, were doing. Additionally, the definition of a CASE tool
varied. Delegates argued that any too1s that help produce systems are
CASE tools such as project management too1s, 4th generation 1anguages
or totally integrated CASE too1s. One definition of CASE tools is:

' ... software packages which automate or support one or more
activities of the systems development cyc1e. They should have their
own database holding the deliverables which they use and produce,
and may optionally have a graphics front-end by which deliverables
can be entered or updated manually.' (Rock Evans, 1990).

* see Kirkham and Stainton (1992) for further details

www.manaraa.com

Analysis of 'achievements with software engineering' events 35

This definition would exclude project management tools but include 4th

generation languages.
Table 3.l shows the cross tabulation for the questions 'Were you at

the time of the event using SE methods?' and 'After the event did you
investigate CASE tools?'.

Table 3.1 Impact of events

Were you at the time ofthe event using SE
methods?

After the event did you investigate Blank No Yes
CASE tools?

Blank 10 10 76

No 3 93 43

Yes 2 69 34

Table 3.2 Usage oftools and methods amongst attendees

Were you at the time ofthe event using SE
methods?

Were you at the time ofthe event using Blank
CASE tools?

Blank 10

No 5

Yes o

No Yes

4 o

163 53

5 100

Of those already using SE methods at the time of the event 22% of
them decided to investigate CASE tools to support the SE method.
Perhaps they had already carried out the investigation of CASE tools

www.manaraa.com

36 The DTI SOLUTIONS programme (1989-91)

appropriate for their adopted method before the event. On the other hand
40% who did not use an SE method investigated CASE tools.

A point stressed by many of the demonstrators was that a CASE tool
could only be employed effectively if a suitable SE method is in place. A
study by Price Waterhouse (1990) showed that one in five people using
CASE too1s had rejected them, leading to the term 'shelfware'. This is
shown forcib1y in Table 3.2 where only 3% are using an SE method with
no supporting CASE tool. Of those using an SE method 65% supported
the use with a CASE tool.

After the event, an encouraging 40% of those who had previously not
used CASE tools were persuaded to investigate such tools. However,
eleven claimed to have started to use a CASE tool. Of those that did not
do anything, 19% were a1ready familiar, 49% thought it not relevant, 8%
had a change of role and many claimed that expense and time (24%) were
prohibitive at this time.

3.5 ANALYSIS OF 'IT FOR COMPETITIVE ADVANTAGE' EVENTS

Figure 3.1 shows that the delegates' organizations were aware of the
potential effect of IT upon competitiveness. Typical1y, two-thirds of the
companies have an IT plan and in over 60% of them the IT and Business
Plans were linked. This, if true, is a very encouraging trend as the Price
Waterhouse IT Review (1992) cites the top issue as 'Integrating IT with
Corporate Strategy' (see Fig. 3.2).

The delegates appeared to work for companies who took a long term
view of the future. At the time of the event, 24% of the organizations
were using SE methods and of the companies who had not previously
used SE methods 53% were persuaded to investigate methods. 32% are
now using SE methods. This represents an increase of 33% over the
number at the time of the event. At the time of the event 20% of the
organizations were using CASE too1s and of the companies who had not
previously used CASE tools, 36% were persuaded to investigate methods
and 15% are now using CASE too1s.

www.manaraa.com

Analysis of 'IT for competitive advantage' events 37

IT gives compelilive edge 10 company?

IT gives compelilive edge 10 rivals?

Company has an IT plan?

IT and business plans linked?

o 20 40

Fig. 3.1 Attendees' perception of impact of IT on business.

50~--------------------------------.

40

30

20

1991

Fig. 3.2 The top four factors .

60 80

- Co t containment

_ Recruiting staff

100

o Meeling project deadlines

_ Integrate IT & corp. trategy

www.manaraa.com

38 The DTI SOLUT/ONS programme (1989-91)

Time

Cost

Staff expertise

Management awareness

Information

Not applicable

o 5 10 15 20 25 30 35

Fig. 3.3 Barriers against SE methods.

Time

Cost

Expertise

Management awareness

Not applicable

o 10 20 30 40 50

Fig. 3.4 Barriers to CASE tools.

www.manaraa.com

Critical success Jactors 39

According to the Price Waterhouse survey cited above, the IT
departments' expenditure in the latter half of the 1980s has been
restrained and cut back. Furthermore, the problem of cost containment
has become one of the fOUf key issues of the 1990s (see Fig. 3.2).

The main barriers against introducing SE methods and CASE tools
into organizations are shown in Figs. 3.3 and 3.4. As can be seen in both
cases, in descending rank order, the barriers to introducing SE methods
and CASE tools are cost, expertise, time and management awareness. In
an atmosphere of cost containment, cost, expertise and time become
critical and companies are reluctant to increase costs and invest in new
methods and tools.

3.6 CRITICAL SUCCESS FACTORS

It is worthwhile attempting to identify the critical success factors in the
hope that this may help subsequent programmes of this nature. What was
extremely rewarding was that SOLUTIONS not only succeeded in
creating awareness, it also had impact; organizations who attended the
events or received publications took action as a result. Delegates that
attended the event feIt that it was time weH spent.

This was not a study of a problem or of 'what to do' and in that sense
there are no conventional recommendations. Set out below are the factors
that were important in helping the programme reach its objectives. It is
for the reader to decide whether these factors are relevant in other
programmes of this type and should be treated as recommendations. The
foHowing are the main factors:

• The project was approached as a marketing exercise; care was taken
not to lose the prime objective of the programme which was to create
an awareness of software engineering methods and CASE tools in
British industry and encourage it to take action.

• Although the creation of quality events, newsletters and other delivery
products, such as audio tapes and tape-slide presentations were
important they were not the prime goal, but merely the vehicles.

• Driven by the above considerations the programme created, in a cost­
effective manner, several deliverables that could be used flexibly to
meet the customers' requirements.

www.manaraa.com

40 The DTl SOLUTlONS programme (1989-91)

• Central to the success of the programme was the ability to respond to
feedback and be prepared to experiment with new ideas. This required
dose liaison with the OTI and the ability to back the proposals for
change with relevant facts.

• The project required three very important skills, project management,
technical expertise and public relations and marketing.

• Vital to the success of the programme was the quality and appeal of
the chosen demonstrators coupled with the ability of the core team to
provide aseries of linking presentations to design effective events.

• Focusing on the business benefits was the most effective way to
achieve the objectives of the programme.

• Careful choice of facilities and the geographicallocations of the venue
was very important.

• The quality of the mailing list database was important in attracting the
right audience.

• Short events, such as Breakfast Seminars, were as effective in
achieving the objectives of the programme as the longer events.

• The optimum number of delegates was around the 40 to 50 mark
allowing for better audience participation than in the larger events.

• The programme also succeeded in getting organizations who were
making use of SE methods to review their current practice. This was
an unplanned achievement.

• Finally through Management (Breakfast) Seminars the programme
was successful in targeting SMEs and green field sites, two of the
main targets of the SOLUTIONS programme.

www.manaraa.com

Further information 41

3.7 CONCLUSIONS

SOLUTIONS was a campaign to increase the awareness in British
Industry of the existence and benefits of software engineering methods
and CASE tools. The programme comfortably met and exceeded the
contractual obligations regarding the number of events, average
attendance and profile of people attending. It went substantially beyond
these measures in providing a programme of events, newsletters and
publicity that had an impact weIl above the norm for this type of
programme. Both the technical and the managerial events were successful
in raising the awareness of SE methods and CASE tools.

ACKNOWLEDGEMENTS:

1. This chapter was compiled after the SOLUTIONS contract which
was carried out for the DTI from March 1989-March 1991.

2. The team consisted of Salford University Business Services Ltd,
who provided the project management, the Information
Technology Institute, University of Salford, who provided the
technical expertise and PACE Communications Ltd who provided
the PR and marketing.

3. Special mention must go to Paul Bowker (University of
Huddersfield), Stewart MacKay (Salford University Business
Services) and Mr Tim Ingham (PACE Communications) who
contributed greatly to the success of the project.

4. The principal authors would like to thank John for this chapter and
all the above mentioned for access to the material derived from the
SOLUTIONS project.

FURTHER INFORMATION

Further information regarding SOLUTIONS is available from:
Stewart Mackay, Salford University Business Services Ltd,
Technology House, Lissadel Street, Salford, M6 6AJ.
Tel: 061 7457457.

www.manaraa.com

4

CASE usage in the UK, 1991 *

4.1 THE UPTAKE OF CASE

Towards the end of 1990, staff at the University of Sunderland undertook
a survey of the use of CASE within the United Kingdom (Stobart,
Thompson and Smith, 1991b). The survey was undertaken by sending a
postal questionnaire to 480 organizations involved in the development of
commercial software.

The purpose of the survey was to quantify the actual usage of CASE
in the UK. While many forecasts for the future and expected impact of
CASE have been published, (Chikofsky and Rubenstein, 1988; PACTEL,
1985), few surveys had been undertaken to determine how much CASE is
actually being used. Those surveys which had been completed (Hughes
and Clark, 1990; Parkinson, 1990; Stobart, Thompson and Smith, 1990a)
were either not UK-based or were undertaken before current CASE tools
were available on the market.

There are many people around who will tell you that the level of
usage of CASE is high; however, many of these are commercial CASE
vendors and thus have avested interest in making such statements and
thus convincing potential CASE users that they, too, should invest in the
new technology.

4.1.1 Objectives

The main objectives of the survey were:

• to determine the level of usage of CASE tools, particularly within the
commercial sectors of computing in the UK;

* The authors gratefully acknowledge the contribution made by Simon Stobart and
Barrie Thompson to the work in this chapter.

www.manaraa.com

The uptake of CASE 43

• to determine the hardware and software platforms used by those
companies who had chosen to invest in CASE technology;

• to identify which areas of software development cause the most
problems and how (if at all) CASE has helped to solve these
problems;

• to determine those areas of the software life cyc1e which are currently
automated, and to highlight areas which would benefit from
automation in the form of future CASE tools;

• to determine the quality and efficiency benefits which have been
achieved by companies who use CASE;

• to identify problems with current CASE technology and highlight
areas for future improvement;

• to find out why many organizations have decided to reject CASE.

4.1.2 Results

The survey was sent to 480 organizations. The response rate was a
relatively disappointing 25%, of which 23% of the whole proved to be
useful responses. Follow up enquiries revealed that non-respondents had
not responded because they did not use CASE.

The survey succeeded in painting a picture of an industry that has not
yet really woken up to the use of CASE technology. That is, there
appeared to be a relatively low (18%) usage of CASE among those
people who replied to the survey (Table 4.1). The enquiries amongst non­
responders suggested that the actual uptake was considerably lower since
most people who did not reply did so because they were not using CASE.

There was, however, a great deal of interest in CASE and over half of
the respondents indicated that they were either using CASE, going to use
it or considering using it in the future. This promises a great deal more
use of the technology as we move through the 1990s, particularly when
you consider the new and much more advanced tools that are becoming
available all the time. The major reasons given for rejecting CASE are
summarized in Table 4.2 and illustrated in Fig 4.1.

www.manaraa.com

44 CASE usage in the UK, 1991

Table 4.1 Uptake of CASE amongst respondents

Response Percentage

Currently using CASE 18%

Currently evaluating CASE 26%

Considered but dismissed 13%

Willing to purchase 6%

Not evaluating 26%

Not sure 11%

Table 4.2 Reasons for rejecting CASE

Reason for rejecting CASE Percentage

a) cost of currently available tools 31%

b) no management backing for CASE technology 16%

c) current approaches appear to be satisfactory 13%

d) lack of belief in the c1aimed productivity benefits 8%

e) lack of supported methods 8%

f) poor quality of tools 7%

g) staff refusal 1%

h) lack of belief in the c1aimed quality benefits 1%

i) other 15%

www.manaraa.com

The uptake 0/ CASE 45

Percentage

35 31

30

25

20

15

10

5

0

a b c d e

Factor
Fig 4.1 Reasons for rejecting CASE.

9 h

The respondents were gloorny about the future for CASE. Their
perceptions of the future are given in Table 4.3.

Table 4.3 Perceived future for CASE

Perceived future Jor CASE CASEusers Non-users

No future 16% 11%

Little improvement in tools 32% 46%

Substantial improvement leading to market acceptance 52% 36%

Become accepted by developers as preferred method 0% 5%

Totally change software development and maintenance 0% 1%

48% of respondents using CASE saw little or no future for CASE,
whilst 57% of non-users were equally pessirnistic. This degree of
pessirnisrn rnay be attributable to unrealistic expectations in the first
place.

www.manaraa.com

46 CASE usage in the UK, 1991

4.2 PROBLEMS AND DIFFICULTIES

The underlying reasons for the pessimistic view of the future of CASE
tools was explored in three questions:

• Problems identified by current CASE users

• Required facilities for future tools from existing CASE users;

• Required facilities for future tools from those not currently using
CASE tools.

The responses are shown in Figs. 4.2, 4.3 and 4.4 respectively. What
emerges quite c1early is that those who have used CASE have different
priorities from those who have not.

In particular, code generation and software testing faci1ities are a
higher priority for non-CASE users and high quality graphics are 1ess
important.

Introducing CASE techno10gy within a data processing department
can, in itse1f, create a number of problems and difficu1ties (Stobart,
Thompson and Smith, 1990b). If the department concemed already has a
high commitment to the use of deve10pment methods, documentation,
standards and quality assurance practices, the transition to a semi­
automated approach using CASE can be quite straightforward. That is,
because the organization is a1ready used to working with methods and to
providing documentation the introduction of CASE can simp1y be seen as
supporting those procedures which already exist. This assumes, of course,
that the CASE too1s which are to be introduced within the organization
support the methods which are currently in day-to-day use.

If, however, the CASE tools which are being introduced do not
support current working practices because they conflict with the methods
which are currently in use, there are sure to be problems as a who1e new
set of working practices will have to be introduced and 1eamt.

Sirnilarly, if an attempt is made to introduce CASE techno10gy within
an organization which has not been used to emp10ying software
engineering methods, techniques and standards, there will certain1y be a
lot of very large problems. It is almost certainly better to introduce
methods for software engineering gradually and to follow them with the
too1s to support the methods. Trying to introduce everything at the same
time is probab1y a recipe for disaster.

www.manaraa.com

Problems and difficulties 47

Poor code generation

Poor tool integratIOn

Poor genarated documents

Poor user ,nteriace

Poor supplier support

Poor user interiace

Poor documentation

Lack 01 multi user lacll~ ,es

o 5 10

Percentage 01 users

Fig 4.2 Major problems identified by existing users.

Reverse engineering

Code generation

Increased securily

Customlzation

Software testing lacit~ies

Expert system assistance

Full melhod support

Improved genera ted documents

High Qua.lily graphics

MuHiuser systems

Percentage 01 userS

Fig 4.3 Required features identified by existing users.

Reverse engmeering

Gode generation

Increased secunly

Customlzatlon

Software testlng laCllities

Expert system asslstance

Full method support

Improved generated documents

High Qualily graphics

Multiuser systems

o 2 4

I
I

6 8
Percentage 01 users

Fig 4.4 Required features identified by non-CASE users.

15 20

10 12 14

www.manaraa.com

48 CASE usage in the UK, 1991

Typical problems that can arise when introducing CASE are:

• communication problems - how is team work supported by CASE?

• fear that introduction of CASE may lead to loss of jobs;

• training staff into the new way of working;

• productivity may not rise immediately - there will be a leaming curve
and a settling-in period;

• how can you be sure that the CASE product which you introduce will
not be out-of-date in a few years?

• new hardware and software may be needed to run the new tools;

• the cost of buying CASE tools, hardware and training may be difficult
to justify to management.

Of course, introducing CASE should bring benefits and advantages as
weH as problems. Otherwise it would not be worth even considering the
introduction of CASE. The remaining chapters in this book will focus
upon ten lessons which demonstrate successes, failures, problems and
solutions and what can be learnt from these.

4.3 CONCLUSIONS

The area of CASE is, of course, dynamic and constantly changing, and
any survey is only valid within a very short time scale. What can be
clearly and safely stated is that the use of tools is still lower than one
might have thought (or hoped); but the usage is growing and will
continue to do so.

There is, therefore, a clear need for more information on tools and for
clear documentation on the successes (and failures) of CASE usage. For
CASE to be fuHy accepted within industry in general, there need to be
much better means of effective technology transfer. In particular, there
needs to be clear quantification of the benefits to be gained by the
implementation of CASE within the software development process.

The UK Department of Trade and Industry (DTI) SOLUTIONS
programme (SUBSL,1991) described in the previous chapter was set up

www.manaraa.com

Summary 49

to address many of these issues and particularly to raise awareness of best
practice and experience in implementing both CASE tools and methods.
Many of the case studies contained in this book are drawn from that
programme. The aim of Part Three is to provide some of the required
information, particularly in the areas of implementation and management
of methods and tools.

4.4 SUMMARY

The main findings of the Sunderland survey described in this chapter
were as follows:

• CASE was found to be used by a 10w proportion (only 18%) of
respondents;

• Most CASE users are working with tools which are based on a
microcomputer or a workstation (rather than a mainframe computer);

• Most CASE users are also applying a semi-formal software
engineering methodology (e.g. Yourdon, JSDIP, SSADM);

• Those software developers who do not use CASE tend not to use any
formal or semi-formal methodologies or techniques for software
development;

• Several people indicated that future tools should provide better
automated documentation, full method support, validation facilities
and better code-generation;

• The ability to support team projects, multi-user development and
computer aided co-operative working practices was highlighted as a
major problem with current CASE technology;

• Less than 15% of respondents thought that CASE had no future at all,
but nearly 50% were pessimistic about improvements in the near
future;

• Most people thought that the use of CASE would increase in the
future.

www.manaraa.com

50 CASE usage in the UK, 1991

FURTHER READING

Stobart, S.C., Thompson, lB. and Smith, P. (1991) The use, problems,
benefits and future directions of CASE in the UK. Information and
Software Technology, 33(9) 629-636.

Full details of the survey and findings are presented in this journal article.

www.manaraa.com

PARTTHREE

LESSONS FOR THE FUTURE

www.manaraa.com

5

Methods come before tools

5.1 INTRODUCTION

This chapter focuses upon the role and importance of methods in the
process of information systems development. In particular, lessons
regarding the importance of methods are illustrated by two case studies.
One of these is taken from the experiences of a large Govemment
department, the other from a financial institution.

Both of these case studies illustrate the importance of methods and,
what is more important, of dear commitment to those methods
throughout the organization. Tools can, and do, of course, help; but
without a method which everyone is committed to and adheres to, they
are of little use or value.

The chapter begins with abrief history of methods, followed by a
survey of some of the most important methods and tools. The two
detailed case studies follow. A summary section presents the main
lessons leamt and principles demonstrated by the case studies. The
chapter doses with a list of reading material regarding methods and tools.

5.2 THE IMPORTANCE OF METHODS

5.2.1 Background

All branches of engineering have a set of methods and tools with which
to work. For instance, civil engineers have methods to aid in the
calculation of the stresses and strains on bridges, electronic engineers
have methods to help in the lay-out of electronic components on a circuit
board, and chemical engineers have methods based on chemical
equations to help when working with chemical reactions. Information
system engineering is no different to any other branch of engineering in
this respect. Methods are equally important during the design and

www.manaraa.com

54 Methods come before tools

implementation of an information system as during the design and
construction of any other engineering artefact.

Information systems engineering has developed from the discipline of
software engineering which has, in turn, developed from the art of
programming. It must not be forgotten that it is not that many years aga
that there were no methods for the programmer to work with. Indeed, in
the early days of computing, programming was truly an art and not a
science. The early programmer had no methods to help himlher in the
task of software construction.

Fig. 5.1 illustrates the way in which information systems development
has matured over the years. It should, however, be stressed that
information systems engineering is still a relatively immature discipline
in comparison with many of the more established, and more traditional
branches of engineering. Indeed, it is only in quite recent times that
methods have become available for designing and constructing
information systems. Even today, there are many methods around and
little real agreement as to which is the 'best' method (if there can ever be
said to be such a thing).

It was the so-called 'software crisis' of the late 1960s (Naur et al..
1976) which brought a realization that methods were needed if software
development was ever to become a truly professional engineering
discipline. Out of this realization aseries of methods were born. An
overview of the history of information systems development methods is
presented in Table 5.1.

Therefore, the information systems developer now has a set of
methods with which to work. Which methods should one choose for a
particular project? This is often a difficult question to answer as there
may be many factors involved in making such adecision.

For instance, the following questions may determine the answer:

• What methods do I (and any other people involved) already know?

• What are the characteristics of the p~oblem environment?
Real-time? Data processing? Safety critical? etc.

• What tools do I have available to support the methods?

• Are any methods required by the c1ient or because of legislation?

www.manaraa.com

The importance ofmethods 55

Programming
No rnethod
Black art

I Software engineering

Infonnation y tern engineering

Structured rnethods
Fonnal rnethod
CASE

Fig. 5.1 A pictorial history of software development.

1960

19 0

1990s

=

www.manaraa.com

56 Methods come before tools

Table 5.1 A tabular history of methods

Period Methods Application

1950s Flow charts General purpose

1960s MASCOT Real-time
Structured programming General purpose

1970s JSP Commercial DP
Yourdon General purpose
Wamier-Orr General purpose

1980s SSADM Commercial
JSD Real-time
HOOD Object -oriented

systems
VDM,Z Formal

specification

The following section summarizes some of the most common methods
that are available to the information system developer.

5.2.2 Categories of methods

Methods are now widely used throughout the software development
community. A study of 230 organizations undertaken in the United
Kingdom by market analyst Spikes Cavell in 1992 (Spikes Cavell, 1993)
revealed that 73% of companies use one form of method or another. The
survey also showed that almost 19% of those companies which were not
currently using a method were planning to do so in the future. These
results are illustrated in Fig. 5.2.

This represents, then, a major commitment to the use of methods
within the UK information systems development·community. However,
one common statement that is still made is:

'It doesn't matter what method you use, as long as you use a method.'

www.manaraa.com

The importance of methods 57

Fig. 5.2 Uptake of methods in the UK, 1992 (after Spikes Cavell).

There is certainly so me truth in this statement but certain methods are
better suited to certain application areas. For instance, methods such as
SSAOM (see below) are ideal for the development of large commercial
systems, formal methods such as VOM (see below) are weH suited to
systems which particularly require mathematical rigour during their
development to ensure high quality and reliability, and software design
methods such as JSP (see below) provide a good approach to the
development of commercial software modules.

Aselection of the most common categories of methods is discussed
below. Methods exist to address every aspect of information systems
development including systems analysis, systems design, software
module design, software implementation, validation and project
management. The categorization given below is not, however, based upon
the areas of the development life cycle which the method addresses.
Rather, it is based upon the fundamental principles which underlie that
particular class of method:

• Informal methods

• Oata flow methods

• Oata structure methods

• Structured techniques

• Formal methods.

www.manaraa.com

58 Methods come be/are tools

Informal methods involve the application of the generic principles of
software engineering such as structured programming and stepwise
refinement. These are, however, basic principles and are not in
themselves methods. There are , of course, many methods based upon
these two principles, but simply applying these principles is a long way
from using a method.

There are many software developers who will claim to use structured
programming and/or stepwise refinement as a method. They are, no
doubt, applying these important principles, but they are not really
applying software development methods. The use of the term method
implies the use of a systematic, standardized approach to software
development. That is, the developer should follow a laid down set of
rules which constitute the method.

There are, of course, many companies which have extremely
respectable and useful in-house methods. Such methods may weIl grow
out of a company's existing working practices. This will cause minimum
disruption as the method will build upon practices with which the work­
force are already familiar. There are also dangers in developing such in­
house methods. They can lack the rigour and quality assurance rules that
are built into external methods. The survey of Cavell found that a quarter
of the organizations in the UK claimed to use an in-house method.

Data flow methods are based upon the flow of data though a software
system. The method will usually result in the production of a data flow
diagram of the software. This data flow diagram will then be refined into
a program structure chart in terms of the three fundamental constructs:
sequence, selection and iteration.

Program design methods that fall into this category are those
developed by Constantine and Yourdon (Yourdon, 1989). System design
methods which are based on data flow principles are Gane and Sarson's
Structured Systems Analysis (Gane and Sarson, 1977), DeMarco's
Structured Analysis and System Specification (DeMarco, 1979) and
MASCOT (Modular Approach to Software Construction, Operation and
Test) (Simpson, 1986).

Data structure methods are methods which attempt to model the
structure of the data on which the software system is operating. The
objective of this approach is to try to model the real world in terms of the
data. Object oriented approaches can also be included in this category as
they attempt to model the data on wh ich the software system operates in

www.manaraa.com

The importance of methods 59

terms of objects and the operations which can be performed on those
objects.

Methods which fall into this category are those developed by Michael
Jackson (1975,1983), namely JSP (Jackson Structured Programming) and
JSD (Jackson System Development), and LCS (Logical Construction of
Systems; Warnier, 1981).

Many of the more popular structured techniques have been formed
from a collection of well-established procedures, rather than being based
upon a basic principle such as data flow. Techniques which are often
incorporated in such methods are:

• Structure charts

• Data flow diagrams

• Entity life histories

• Entity relationship diagrams

• Relational data analysis.

Methods of this type include SSADM (Structured Systems Analysis
and Design Method; CCT A, 1990) and Information Engineering
(Finkelstein, 1989).

SSADM is almost certainly the most widely used method in the UK. It
was developed on behalf of the Govemment' s Central Computer and
Telecommunications Agency (CCT A) and is the mandatory method for
any public service work in the UK. The method is now controlled by the
BSI (British Standards Institute) and thus provides its large user base with
a well-known, standardized and well-documented approach.

Although many people will argue strongly about the advantages to be
gained from use of SSADM, there also some companies who would
claim that it does not match their own particular requirements fully. For
instance, one IT professional, whose company has customized SSADM to
its own needs states (Spikes Cavell, 1993):

www.manaraa.com

60 Methods come before tools

'There are very big holes in SSAOM, which the manual is quite
honest about. For example, if you look for guidance about what to
inc1ude in a program specification, what they say is that you should
produce a pro gram specification to the standards of your organization and
that's all.

Pure SSAOM also gives you absolutely no guidance on planning the
testing of a system beyond saying that at some stage you have to plan
some testing. It gives no guidance about planning for the implementation,
converting data from existing systems or constructing physical files.'

Methods such as STePS (Edwards, Thompson and Smith, 1994) have
been proposed to help solve such problems.

All the methods which have been referred to above are semi-formal in
nature. That is, they help the user to develop diagrammatic and textual
models of the system and its data. Formal methods use mathematics to
represent the system being modelled. The main argument for the use of
formal methods is that mathematics is precise and unambiguous
compared to other approaches which are more prone to both error and
misinterpretation.

Methods which fall into this category are VOM and Z (Sommerville,
1989). Such methods are commonly used in areas where rigour and
correctness are of prime importance such as safety critical systems.

However, no matter which method is chosen for a software
development project the following important principles must be adhered
to if the project is going to be successful:

• management must be committed to use of the method;

• staff must be fully trained in the method;

• formal review systems should be set up to ensure adherence to the
method.

That is, starting off on a large development project, and using a
formal or semi-formal method for that project, is not something that
should be entered into lightly. It requires full commitment for all who are
involved in the project. If that commitment is not present, then there are
likely to be problems during the project.

The same set of principles can also be said to apply to tools. However,
in the case of tools, it is even more important that there is a c1ear
commitment to both the tools and the underlying methods. It cannot be

www.manaraa.com

The importance ofmethods 61

stressed enough that too1s are of no use without an underlying method.
Too1s are designed to support methods and, by definition, CASE t001s are
designed to support the software engineering process, which implies the
use of methods.

5.2.3 Tool support for methods

A 1arge number of CASE too1s have been designed to support specific
methods. Aselection of these are shown in Tab1e 5.2. Many other CASE
too1s are generic and support techniques which are common to many
methods such as data flow diagrams, program structure charts and entity
relationship models.

Table 5.2 Aselection of methods and the supporting tools

Method Developer Tool

Information J ames Martin Associates IEF
Engineering

Excelerator

Application Development
Workbench

SSADM LBMS/CCTA LBMS tools

JSP Michael J ackson PDF Speedbuilder

Systems Thinking Cognitus Systems Ltd Ithink

Business Process TI Business Design Facility
Re-engineering (BDF)
(BPR)

DeMarco Method Meta Systems Structured Architect

Yourdon YourdonLtd Yourdon Tool Kit

However, whatever form a CASE too1 takes, it will be used in
conjunction with some sort of software deve10pment method. It is vital
that the staff who are to use the too1 are well-versed in the use of the
method. This is apre-requisite for the introduction of any CASE too1s.

www.manaraa.com

62 Methods come before tools

5.3 CASE STUDIES

5.3.1 Helping training centres work better

This case study focuses on the Information Systems Unit (ISU) of a UK
Government department and how methods helped them successfuHy to
run a training project.

Unlike most departmental ISUs, this unit was not restricted solely to
IT projects. Responsibility was also present for some financial
monitoring, typically of departmental running costs. The staff assignment
section was also part of the services offered by the ISU. The ISU also had
a section of specialist IT personnel and this section supported alt aspects
of IT within the department, ranging from mainframes through minis
down to PCs, and developing software in conventional languages as weH
as in Fourth Generation Languages (4GLs). Standard packaged software
was also supported by the ISU.

The department' s IT strategy was influenced by their business
strategy. This business strategy influenced everything done by the unit as
weH as the means by which it went about its business. Typically, there
were four main areas that encompassed the entire strategy. These four
areas were:

• communications

• hardware

• software

• methods.

It is, of course, the latter category that we are most interested in within
this case study.

SSADM, PRINCE and business analysis have aH been adopted, as
weH as some other, less formal, techniques. This case study illustrates
how successful the use of these methods was, and how they were used to
gain great benefits in the development project concemed.

The project in question was like most other projects developed
in-house by the ISU, in that it did not solely relate to the ISU and the
system users. That is, there were other parties who were interested in, and
involved in, the system which was to be developed. Although the users
had the major interest in the project, other groups were also involved.

www.manaraa.com

Case studies 63

• Tbe data protection officer, who was responsible for registering the
systems.

• Tbe management team, who were involved in planning, resource
training and general business issues.

• The Government department, which was interested to see how the
system achieves its objectives, and how it might assist the department
in achieving its overall aims.

• Central information systems development (ISD), as they were the
owners of the technical staff, and had overall control regarding
staffing levels.

• Trade unions, whose aim was to protect their members and to agree a
suitable workplace agreement.

• Internal Audit, who may be the last on most people' s list of interested
parties but are, in fact, vital to the successful implementation of a
system. In this particular instance, the ISU involved Internal Audit
staff from the outset and reaped many benefits from such an
arrangement.

Tbe users of the system were spread throughout a large geographical
area in Training Centres. There were 12 such centres, generally located
on the outskirts of larger towns. Some of these centres acted as
administration points for smaller 'satellite' units, of which there were
five.

Other major users of the system were the Management Training Unit
who wished to use the system to assist in administration, and the
Headquarters branches, namely Administration and Finance. Tbeir use
would centre largely on query facilities.

Tbe prime objective was to help the local managers become more
autonomous and to take more responsibility for the generation of the data
and use of the information produced. Tbere were areas within the
workplace where there was duplication of data and the system provided a
means of reducing these phenomena. The hardware, software and
communications installed provided the basic building blocks for the
department' s IT strategy.

Tbe department had a staff training branch and a budget to cover
training expenses. Tbe department also supported staff development

www.manaraa.com

64 Methods come before tools

schemes such as the British Computer Society's Professional
Development Scheme.

It was feIt very strongly that if the system was to function efficiently
then its users must be equipped to get the best from it. No outside
consultants were required in the provision of training as the courses were
designed, documented and taken by staff from within the department.

As part of the training project, systems were developed covering
seven areas.

• Personnel records for trainees to monitor the educational
achievements of trainees.

• Payroll interface to allow accurate and timely payment of trainees.

• Course diary details which correlate instructors and classes.

• Limited personal information on instructors including training history.

• Company records detailing those with links to the training centres.

• Records detailing applicants.

• Management information provided as requested and on an ad hoc
basis

The benefits achieved already and those still to come were directly
linked to the objectives of the project. As a tool in assisting local
management to improve the accuracy and timeliness of its data, it was
very successful in providing help in monitoring progress against pre-set
management targets.

Duplication of data was reduced and a central focal point of
information became available. The role of the marketing officer was
greatly assisted by the capabilities of the system to identify trends and
give information on recruitment and placement. Some direct financial
savings were accrued Ce.g. the reduced use of DataPost, improved
accuracy leading to fewer payments being spoiled and so on).

Furthermore, as part of the IT strategy the group had become
equipped to deal with even more widespread applications.

The project management method PRINCE was used to manage and
control the project from the outset. The process was an iterative one, as
illustrated in Fig. 5.3.

www.manaraa.com

Case studies 65

Fig. 5.3 Planning, action, control management cyc1e.

The questions that had to be addressed at the planning stage were:

• What are the objectives?

• What are the end-products?

• What activities are required?

• Have quality criteria been set?

• Where are the dependencies?

• Have control points been set?

• Do yardsticks exist by which to set time scales?

• What resources are required?

• What are the constraining factors?

The change control process must address the following issues:

• What is the change?

• What are the implications on the plans for the options?

• How critical is it that we do something?

• What is the best way forward?

• What are the consequences?

www.manaraa.com

66 Methods come before tools

• Are there any knock-on effects?

• How is the business case affected?

The project board was the real managing agent of the project. It was
manned by a chairperson and at least one senior user and one senior
technical person. Their function was c1early defined and they assumed
overall responsibility for the project.

It must be stressed that the members of this group were very senior
members of the organization; this is vital for any project to be successful.

Training for board members is also vital so that they can appreciate
the responsibility of their position. The project board should have the
power to terminate the project if it becomes necessary at any point during
the life of the development.

Another vital aspect of the PRINCE methodology is that of the project
assurance team. Like the project board, the members must be chosen for
their influence and skill in a particular area. There should be auser, and a
business and a technical assurance co-ordinator, all of whose roles
converge to give assurance on the approach and direction of the project.
It needs to be stressed that they do not have any executive authority to
take decisions, theirs is mainly an advisory role both to the project team
and the project board. Some of their main functions inc1ude advising and
assuring the stage team, assisting in the production of plans, assuring the
project board, maintaining documentation and providing project
continuity.

The approach described above was adhered to in this project, and was
found to be very successful.

The Structured Systems Analysis and Design Methodology (SSADM)
(Ashworth and Goodland, 1990) was used in this project. The most
notable features of the use of SSADM in this project were the support
tools used and the documentation produced:

• Support tools. There are various automated support tools available to
support SSADM. In this project, Automate and Datamate from
LBMS were used. These products have since undergone redesign by
the suppliers and are now marketed as Automate Plus, a composite
package of the earlier two.

www.manaraa.com

Case studies 67

• Documentation. In any project, particularly in a large one, the
documentation produced and maintained is vital. SSADM produces
much documentation but in a concise format that makes it easier for
new members to join the team and become productive early.

The automated tool is invaluable in producing and cross-referencing the
documentation. The screen and report layouts, generated with the method
and quality assured with the PRINCE method, complement the
documentation to give a total picture of the shape of things to come.

The method has many advantages but it should be stressed that it
should not operate without a project management method controlling it
and does not, in itself, guarantee success.

The main advantages found from using these tools and methods were:

• a staged approach;

• ease of use;

• the setting of attainable objectives;

• the use of Quickbuild (see below);

• the reduction of dependence upon development staff; and;

• the quality of documentation produced.

The decision had already been taken that the software would have to run
in an ICL environment. This immediately restricted the implementation
options. An evaluation exercise was carried out comparing two 4th

Generation solutions (Quickbuild and Sygmar) with COBOL and a
conventional file approach.

To complete the project within the given time scales effectively ruled
out the possibility of using a conventional approach. Quickbuild uses a
structured approach which eases learning and aids subsequent
maintenance. Quickbuild was supported locally by ICL.

Immediatelyon completing the basic training course on Quickbuild,
the programming staff were able to deli ver programs. These may not have
been the most efficient pro grams ever written but they indicated the short
learning curve required.

www.manaraa.com

68 Methods come before tools

Requirements for change to the existing system can more readily be
put in place than if methods had not been using during system
development. Experience in the language has increased the knowledge
base of all the programming staff and this, coupled with the sharing of
problems, has greatly improved the speed with which changes can be
wrought. Again, the structure of the prograrns facilitates change and
awareness of the database design enhances the efficiency of these new
programs. Since the guidelines laid down in SSADM were followed
throughout the project, it is safe to say that documentation is complete
and to the required standard.

The project was judged a success. It was delivered within 5%
tolerances on all three counts of budget, time scale and resource. The
objectives, as detailed in the project initiation document, were met fully
and the benefits have already been realized. The tools and methods used
proved invaluable and the staff contribution to the project has been
recently recognized by a round of promotions within the group.

5.3.2 A strong case for methods

This case study is based upon the experiences of a large financial
institution. They have offices throughout the UK, assets of over f2
thousand million and several financial services subsidiaries, including an
estate agency chain of 86 branches. Within the institution, the Business
Systems Division comprises around 150 staff. The mainframes on which
the vast majority of processing is done are BULL DPS7 machines and
most systems have been built in-house using COBOL, which is still the
main development tooI.

In the first half of 1986, a merger increased the size of the
organization by over 50% almost overnight. To cope with this, a major
recruitment campaign was instigated in 1987 with the aim of doubling the
systems development resource and bringing in systems project
management skills from outside the organization.

Major development commitments precluded any changes in existing
approaches until the second half of 1988 when two studies were initiated
to consider improvements. The aim of the first study was to make
recommendations on structured analysis and design techniques to be
implemented within the institution, whilst the second was intended to
investigate the CASE market place and to make recommendations as to
the future potential for such tools in the company.

www.manaraa.com

Case studies 69

Several things quickly became apparent. The two projects described
above could not be run independently of each other because they could
result in incompatible recommendations. In particular, any CASE tools
purchased would have to support the methods which were to be taken up.

Even if the above two projects were to be combined into one project,
the objectives were not broad enough.

Two questions arose from the initial work carried out:

• Should the organization be selecting techniques without the
framework of a good 'method' within which to use them?

• Should the study consider only CASE, or should other tools such as
IPSEs (Integrated Project Support Environments) be inc1uded within
its scope?

It was ultimately, and very sensibly, decided to run one project to look
at methods, techniques and tools and recommend a way forward for IT
within the company.

The project finally recommended the foUowing:

• PRISM as a set of methods; and

• Maestro as a CASE tool.

PRISM was chosen because it offered a wide range of different but
integrated methods. It allowed discrimination between major and minor
projects and covered the areas of enhancement and maintenance. PRISM
offered a logical separation of methods and techniques and did not tie the
company to any specific suppliers of tools and methods. It also allowed
them to maintain an existing, happy relationship with present suppliers in
the area of skiUs training.

The Maestro tool was chosen because it was not restricted to specific
techniques or methods, offering the flexibility to adapt to most
techniques. A further useful feature was the help that it provided in the
area of existing program maintenance.

The methods for business study, systems development, enhancement
and maintenance and personal systems development were purchased.
They were used in conjunction with the handbooks provided for quality
management, project management, risk management, structured
techniques and the information centre.

www.manaraa.com

70 Methods come be/ore tools

At the time of writing, the eompany had sueeessfully implemented the
business study method. This involved integrating the method into their
proeedures, producing standards for all the deliverables and extra
guidelines where the method was not c1ear, running pilot projeets,
leaming and applying lessons, and running a one-day introduetory
seminar for all systems development staff. This was not an easy proeess.

A methods steering group was established to direet future
implementations. The lessons leamt were applied in the rest of the
implementation, inc1uding some of the following principles:

• The users of the methods should be treated as eustomers. They should
be involved in the proeesses of design and implementation and
edueated properly.

• Similarly, the end users should be edueated about the methods,
especially eoneeming their involvement and eomrnitment as a eritical
sueeess faetor.

• The IT staff require a usable, praetical method. The IT eustomers
should see obvious business benefits resulting from applieation of the
method.

• Commitment must be shown to the methods and teehniques and the
quality which follows from them.

• The methods should be fully adopted by the organization, and full
eommitment should be given to these methods. Even where they are
bought off the shelf and implemented unmodified, they should be
wrapped up in the eompany or departmentallogo, so that they beeome
'their own'.

The methods must also be 'sold' to senior management outside IT,
eoneentrating on business benefits, and not the details and 'beIls and
whistles' which you obtain when you adopt the methods. If they do not
aeeept the method, it is unlikely to be a sueeessful implementation.

A large number of the problems with IT projeets had stemmed from
failure to eoneentrate on the initial stages of the projeet life eyc1e.
Implementing the business study, whieh eomprises a business-based
problem definition and feasibility study, has addressed this issue. More
specificaIly, it means that business problems, not teehnical solutions, are
what now drive IT projeets. Furthermore, measurable, quantifiable

www.manaraa.com

Summary 71

project objectives are set, based on the business problems and
requirements. Communication across departmental boundaries is
improved. The result is healthy arguments about objectives and
justifications before the development, rather than after implementation.

Fina1ly, projects which should not go ahead are stopped by data
driven management decisions, not crippling overruns and failure to
achieve invented benefits.

A proposal for the purehase of the Maestro CASE tool was put to the
company' s executive once some experience of using the PRISM method
had been gained. It was rejected because they were not satisfied with the
lack of a convincing financial justification for an expenditure of f1
million over 5 years. At the time, the rejection was painful and seemed
short-sighted, but with hindsight it is hard to argue with.

The company decided to carry out a formal business study into the
area of CASEIIPSE tools. The reason for this is not so much a retreat
from the initial selection as a recognition that it was 18 months since the
selection was made and the market place had moved on. During that time,
much has been leamt about the methods and techniques which the tool
would be automating and the business study method has proved useful

5.4 SUMMARY

This chapter has focused on the subject, and importance, of methods.
Methods are at the very core of the software development process.
Without methods there is no structure, no standardization, little
documentation and less opportunity for formal reviewapproaches.
Methods help add rigour, formality and hence should ensure a higher
quality end-product.

Tools can also be of great benefit and can also add to the quality of
the end-product. However, tools are of no use on their own. They must be
accompanied by methods. Indeed, the tools are only there to support the
method. Tools can help the software engineer work more efficiently and
more accurately but they cannot make up for the lack of a methodical
approach to software development.

The most important points to be remembered from this chapter are:

• A need to concentrate on business issues; these are the most important
part of any major project or development.

www.manaraa.com

72 Methods come be/ore tools

• The IT section has leamt that to implement a new method or
technique, they have to sell it hard and do it efficiently and effectively.

• It is important to educate and involve everybody.

• A real management commitment to quality is needed.

• A good project management culture is vital to the success of any large
project.

• Good communications and co-operation between all departrnents are
the key to success.

• A stable environment with a meaningful IT strategy is of prime
importance.

Finally, two general principles emerged from the work:

• First, methods must come before techniques which must come before
tools; and

• the more that you need methods, the harder they are to implement, and
vi ce versa.

FURTHER READING

Ashworth, C. and Goodland, M. (1990) SSADM: A Practical Approach,
McGraw-Hill, London.

Of all the software methods available in the UK, the adoption of
SSADM by the UK Govemment makes SSADM arguably the most
significant. This text provides an excellent introduction to the method.

Barker, R. (1990) CASE Method: Tasks and Deliverables, Addison­
Wesley, Wokingharn.

This book is tied to ORACLE's proprietary CASE method but gives a
good insight into a typical method of this type and thus complements
the SSADM text.

www.manaraa.com

6

Evolutionary not revolutionary change

6.1 INTRODUCTION

This chapter discusses the problems and· pitfalls of introducing new
technology into an organization. In particular, it focuses upon the
problems which can arise when introducing CASE tools and the methods
and approaches which accompany them into a new environment.

The chapter begins with a discussion of the problems of change, and
how to manage these, followed by two case studies. The chapter
conc1udes with a summary of the lessons learnt from these two case
studies, and some pointers towards the important factors to be taken into
account when introducing change into any organization.

6.2 MANAGEMENT OF CHANGE

6.2.1 Dealing with change

Introducing new technology into any organization can often lead to
problems and difficulties. The organization concemed will already have
its own set of procedures, working practices, methods and ways of doing
things. There will be staff in the company who have been trained in
particular ways of working and may, therefore, resist changing to any new
ideas and the use of new technology. There may be existing equipment
which is to be replaced and superseded by the new technology; these may
be computers or other new types of hardware.

Whatever the reasons, there will nearly always be a reluctance to any
form of change. The greater the change, the greater will be the resistance.
This, of course, is human nature to some extent. This can be illustrated by
a simple example.

Consider that you are safe at horne indoors in your lounge. Y ou are
sitting by the fire watching the television. Y ou are warm, comfortable,

www.manaraa.com

74 Evolutionary not revolutionary change

secure and contented. Y ou are wearing light clothes and your carpet
slippers. Y our lounge is at a warm, steady temperature. You are in an
environment with which you are familiar and you have nothing to fear or
worry about.

Suddenly you are transported to an Arctic wasteland. Y ou are
surrounded by nothing but the bleakness of white snow. A blizzard howls
around your head. Y ou still wear only your light clothing. Y ou are lost,
freezing and terrified but you know that you must do your best to cope
within this new environment. You will search for shelter and try, as best
you can, to find a way to keep warm. This is a basic human instinct; we
will always try to find a way to protect ourselves and to survive (if, of
course, survival is possible in such a bleak scenario!).

the next.. .. .
o 0

Fig. 6.1 Extreme example of revolutionary change.

This is a (rather extreme) example of revolutionary change. The
individual in this nightmare scenario has been transported to a totally
different and alien environment and left to cope as best he/she can. Y ou
will, of course, think that such an example is too extreme and that such
change situations can never happen. That is tme; but the equivalent
change situations in terms of work environments can be surprisingly
commonplace. That is, quite large and severe changes are often put into
place quite quickly with little thought for the consequences to the
organization and the individuals who work within it.

www.manaraa.com

Alanagementofchange 75

Such extreme change is, without a doubt, a recipe for disaster. Let us
reconsider the above scenario, but this time take an evolutionary
approach to the change.

Y ou are again safe at horne indoors in your lounge. Once again you
are sitting by the fire watching the television. This time the telephone
rings. Y ou ans wer the telephone and hear the voice of your boss, who
invites you to his office the next moming to discuss an important
assignment for the magazine for which you write.

The next moming you arrive early at the office. Your boss is waiting
for you and he invites you into his office. He shakes your hand, makes
sure that you are comfortable and asks his secretary to give you a cup of
coffee. 'Now, Desmond' he begins. 'I have a very important assignment
for you. It is very important to the company but it is also very different to
what you are used to and might, at first, seem a little strange. However, 1
hope that you will hear me out and then you will realise why 1 feel that
you should do it.'

He continues, 'I need someone to write a piece on the conditions in
the Arctic. It is something that we've tried to cover before but we've
never really succeeded because none of our writers have really
experienced the c1imate and the situation there. To remedy this we'd like
to send you to the Arctic to get the inside story on what it' s really like to
be there.'

At first this seems a crazy but intriguing idea. Y ou are quite
concemed about how this assignment will work out. Y our boss assures
you that you will undergo a full training programme before making the
trip to the Arctic. Y ou will be supplied with all the necessary c10thing and
equipment. Y ou will be given some simulated experience of cold c1imates
before you go there. Y ou will undergo thorough medical examinations
before you start out. Y ou will be trained in survival techniques and so on.
Y our boss has really thought this through beforehand and tried to cover
everything.

However, he finishes by adding, 'I feel that it is important that we
also consider carefully your views and feelings in such an important, and
new, assignment. So have a good think about it, and let me know if there
is anything that you feel I've missed and any ot:l).er ways that we can
prepare you for the project. For it to work well, we need your full
commitment, interest and enthusiasm. I' d like us to work c10sely together
on this one.'

www.manaraa.com

76 Evolutionary not revolutionary change

So, in this scenario, when you are arrive in the Arctic wasteland, you
are prepared. Y ou have undergone training, you have covered everything
properly before making the change. The acclimatization programme
which you have undergone has ensured that the climatic change is, to
some extent, gradual, and does not come as an extreme shock to your
system. The change has been engineered in an evolutionary manner,
rather than a revolutionary manner.

Although the above example is somewhat extreme and unlikely, it
does illustrate a number of important points:

• Change should be made in an evolutionary, iterative and gradual
manner.

• Revolutionary change is a recipe for disaster.

• If the objectives of the change are explained carefully to staff, and
they can see the benefits to be gained, they are more likely to accept it.

• If you can gain staff commitment to change, that change is more likely
to succeed.

• People factors are the most important in any change scenario.

The last point is very important. If any organization needs to make
major changes they must get the people in that organization on their side.
This will involve:

• Staff training. A full training programme should be put into place so
that all staff are prepared for the impact of the change.

• Negotiation with trade unions may be necessary. This is particularly
true where retraining or redundancy is planned.

• Redesign of all procedures, manuals and systems connected with the
change.

Fig. 6.2 illustrates the difference between revolutionary and
evolutionary change. Revolutionary change is a sudden step change
which takes a system from one state into another. The results of such a
sudden change are:

• severe shock to the system;

www.manaraa.com

A1anagementojchange 77

• staff dissatisfaction, discontent and dismay;

• high cost of investment in capital equipment;

• problems and perhaps even failure!

Change
.--------- Worst case: big bang

I

/

I

'1
_.I /

_.1
/

_.1 ,/,/
J _ ---

,/

_.1
I

Ideal case: smooth change

Practical implementation:

change in small incremental steps

Time

Fig. 6.2 Evolutionary and revolutionary change.

The staff of any organization are the vital resource and their insecurity
in the face of revolutionary change may weIl be enough to prevent its
success. Even if the staff are able to be convinced, the 'big bang'
approach does not allow for effective evaluation of each stage, and thus
no lessons may be learnt from each step before the next is taken.

It is almost inevitable that a step change will require a large capitaI
investment. It is difficult to prediet the effectiveness of that investment
when so many factors are changing at once, any one of which could
affect the effectiveness of the investment. From a management
perspective, revolutionary change represents an uncontrolled step, whieh
cannot be realistieally planned and managed.

The only case where such a step might be justified might be in an
organization where traditional values and practiees were so entrenched
that only a violent shake-up could affect change. If this approach is
adopted, then aperiod of great uncertainty and trauma must be accepted
as an inevitable consequence.

Gilb (1988) records agraphie example of what can happen when a big
bang approach is adopted, in the context of introducing a global MIS,

www.manaraa.com

78 Evolutionary not revolutionary change

known as the corporate information system, into a large motor
manufacturer.

Work had been running on the CIS for five years. It had a budget of
eighty work years.

The company had attempted to manage the project effectively. They
had:

• consulted the business management literature;

• carried out a feasibility study using external consultants for two
calendar years and fifteen work years;

• bought in the biggest and latest computer hardware and software;

• used structured methods for the project;

• paid up when the project ran over budget initially.

In spite of this, after five calendar years the project had consumed
twice its allocated eighty work years and was not contributing anything
useful. Worse, it was possible to show that the system would never be
able to handle the quantity of work required of it. To process the required
number of transactions in a day, the system would have to complete each
trans action in seconds. In practice, many transactions were taking
minutes.

The size and complexity of the system simply could not be swallowed
in a single chunk. Although this example is not concerned with the
introduction of CASE methods and tools, the same principles apply.

Fig. 6.2 also shows evolutionary change. In its ideal form, it is a
smooth, gradual process. In practice, it is likely that a practical realization
would consist of aseries of small, iterative stages. Either way, both the
staff and the organization are eased into the changes in a much more
sensible and human manner. The results of the evolutionary approach are:

• staff commitment to the process (if it is explained correctly);

• gradual spreading out of cost over time;

• staff satisfaction;

• success!

www.manaraa.com

hfanagementofchange 79

The evolutionary approach allows staff to adjust gradually to new
ideas. It also allows expenditure to be spread over aperiod. Above all, it
allows for proper planning beforehand and evaluation afterwards to allow
adjustment of the overall process.

The management of change is a subject in its own right with excellent
texts provided by Peters (1982, 1988) and Stacey (1990) amongst others.
These texts will provide detailed approaches to the management of
change. However, before a detailed approach to the management of
change can be adopted, there must be a recognition that the process
requires managing, and that change cannot simply be allowed to happen
in a random and destructive way. Many organizations only 1earn this the
hard way by experiencing the consequences of unmanaged and
unmanageable change.

Kliem and Ludin (1992) focus upon the 'people' side of change
management and stress the importance of preparing staff for any changes
which are to take place in their working environment. Failure to do so,
they warn, will result in resistance which may display itself as:

• high staff tumover;

• high absenteeism rate;

• sabotaging change; or

• ignoring change and finding other ways of doing things.

They identify three distinct groups in any change scenario:

• the change target, who are the group of people whose working
practices are to undergo change.

• the change sponsor, who provides the resources to effect the change.

• the change agent, who implement the change.

Without question, the people are the most important factor to consider
when implementing any change scenario within. an organization. The
importance of people is discussed further within the next chapter of this
text.

www.manaraa.com

80 Evolutionary not revolutionary change

6.2.2 CASE technology

Introduction of CASE technology is no different to the introduction of
any other form of new technology. The arrival of CASE will be a
significant change, which will bring with it a new set of challenges and
problems. Such problems may include:

• fear of redundancy amongst staff;

• the need for adequate training;

• short term productivity losses;

• loss of investment due to obsolescence;

• the need for new hardware and software;

• justification to management.

There is a natural fear amongst staff that introduction of CASE may
lead to loss of jobs. Staff may feel that computerizing the software
engineering process will mean that the organization will need fewer
software engineers. The claims made by vendors about productivity may
fuel this fear. However, this is not the case. It should be made clear to
staff that the introduction of CASE will enable them to work in a more
productive and efficient manner, and will enable them to produce higher
quality software systems.

Training staff into the new way of working is essential. CASE tools
need to be leamt, as do the methods that go with the tools. Chapter 2 has
discussed how methods should come before tools. This is an important
part of the evolutionary change process.

Productivity may not rise immediately. There will be a leaming curve
and a settling-in period. This should be expected and planned for. The
long term benefits should prove to outweigh considerably any losses
which are incurred in the short term or any investments in time which are
necessary to get the new CASE tools to work properly (and be used
effectively).

How can you be sure that the CASE product which you introduce will
not be out-of-date in a few years, and more change will be needed? This
is, of course, areal worry with the introduction of any new technology.
All that one can do is be careful and take your time when choosing a set
of CASE products.

www.manaraa.com

Case studies 81

New hardware and software may be needed to ron the new tools. This
will, in itself, require further change. This must also be planned and
budgeted for.

The cost of buying CASE tools, hardware and training may be
difficult to justify to management. That is, justifying the need for, and in
particular the cost of, change may be difficult. The long term benefits of
the introduction of such tools need to be stressed. Unfortunately, the lack
of many dear, quantified success stories often makes this a difficult part
of the process.

The problem of change conceming CASE is that we may ask staff to
adapt not only to large amounts of change but different types of change.
Staff may be asked to swaHow change in software development methods,
tools, documentation, planning, estimation, management and team
working.

This degree of change may weH prove impossible. Even where the
change is possible, keeping track of it in order to manage and guide that
change may still be impossible

Of course, introducing CASE should bring benefits and advantages as
weH as problems; otherwise it would not be worth even considering the
introduction of CASE. The next section of this chapter describes two
success stories. These successes have been a direct result of an
evolutionary, as opposed to a revolutionary approach.

6.3 CASE STUDIES

6.3.1 Making it work in the end

This case study focuses on a manufacturing company which makes and
prints high quality cartons for the food industry. The company uses a
range of high technology equipment to print, cut, crease and glue the
cartons. The company employs 150 people and has a tumover of f1OM.

The company employed a local software house to write a system for
sales order processing, estimating, stock control, etc. This system was
specified in quite an ad hoc manner in traditional 'back of an envelope'
manner and written in BASIC to ron on a minicomputer. Perhaps
unsurprisingly, the system did not quite match up to the expectations of
the company and certainly did not match all of their requirements.

For instance, the software did not cater for record locking and yet the
system was intended to be multi-user. The system never worked and was

www.manaraa.com

82 Evolutionary not revolutionary change

very unreliable. Consequently ad hoc parallel manual systems were
developed by the company to cover the deficiencies of the system.

This rather ramshackle computerized and manual system was
inherited by the commercial manager. The senior management in the
company were not convinced that computers were of value to the
company (perhaps not surprisingly, given their previous experience).
They were, therefore, not keen to invest any more in computer systems.
The commercial manager, however, was convinced of the value of
computer systems. He became the 'user champion' and got permission
from the board to go ahead with a new computer system. They were fully
supportive once the decision to go ahead was made. On the basis of their
experiences a 'softly, softly' approach was adopted.

A grant was obtained from the Department of Trade and Industry and
a complete analysis of the requirements of the company was carried out
and documented. This requirements document contained a detailed
description of all the business processes in terms of data flow diagrams
and entity-relationship models along with examples of all documents
used in the manual system.

This requirements document was sent out to a variety of firms, to
enable them to put forward tenders for production of the system. Many
put forward off-the-shelf systems but on being asked to do detailed
demonstrations withdrew. Some firms submitted bespoke systems. One
of these actually employed personnel from the previous company as
contract programmers.

None of these firms were considered suitable by the company. The
consultant who had written the requirements specification was invited to
tender on the condition that maintenance support could be found. This
was arranged by buying accounts and payroll packages from a
minicomputer vendor who agreed.

The system was developed on an IBM PC using an applications code
generator. Using the requirements specification as a base, a prototype
system was developed. The prototype programs, screens and reports were
validated by the users in paper form. This was a very important part of the
development process. The company realized the mistakes it had made
previously and was determined not to make them again. Once the 'paper
model' had been agreed, the code was generated and the system was
tested by the users. This cycle was then repeated until all the users were
satisfied with the system. Parallel with the development, negotiations
were carried out and a mini computer purchased.

www.manaraa.com

Case studies 83

The COBOL code was ported over to the target machine, and then
compiled and tested. Because of the integrated nature of the system it was
decided to go 'live' on all the system, some 100 programs,
simultaneously. There was really no choice as the old system was
continually breaking down, had duplicate data and lost records, leading to
very low company morale conceming computing systems. The system
successfully went 'live' with very few problems and is now the
cornerstone of the company' s operations.

The system was designed for a company of f6M tumover. It went live
a year ago when company tumover was f8M and is still running this year
with a company tumover of flOM. The hardware has been upgraded and
now supports some 20 terminals and four printers. Users are actively
demanding further functionality as they realize the potential of the
computer system. The system is independent of any hardware supplier.
The system cost f100 000 for both hardware and software and took about
a year to develop and implement.

It is used by the commercial manager and his staff who are able to
provide up-to-date information to their customers. The system is also
used on the shop floor and there is a constant dialogue with the office
staff to ensure that orders are met on time. The factory works on a two
shift system because of the volume of work. The system also provides a
wide variety of management reports on raw material stocks (50% of cost
of product), finished goods, machine utilization, etc. The management
believes that in the long term this will enable them to manage the
company much more efficiently and effectively.

The company had a bad initial experience of IT, but it has leamt from
its mistakes. The lessons leamt have ensured that a successful system was
developed 'second time around'.

6.3.2 An evolutionary engineering approach to developing
business systems

This case study concems a company within the textile industry. In the late
1970s and 1980s, the company was in deep recession. However, in more
recent times the company had achieved considerable improvements due
to the successful implementation of a recovery plan.

The nature of the group is diverse and covers many sectors of the
textile industry. This leads to a demand for information systems to reflect

www.manaraa.com

84 Evolutionary not revolutionary change

the diversity of processes, size and methods of control for the companies
in the group.

In 1984, the group attempted to meet the demand for systems in the
conventional manner of preparing a definition of requirements and
selecting packaged software to meet these requirements. Unfortunately,
this project both failed to produce benefits and to meet expectations of
time sc ale and cost. In view of this traumatic experience, the board
commissioned a team of consultants to assist the information systems
department in a strategy review.

The diversity of a large de-centralized textile group posed a
significant challenge for information technology. Following a detailed
review of the experience of the group, the principles for the development
of an information technology strategy were defined as:

• to provide systems suitable for each industry sector and size of
company;

• to consider the adoption of packages, where applicable;

• to control IT costs through a policy of standard hardware, operating
system and development methods.

A review of alternative strategies was conducted against these
principles. It became apparent that the route of implementing packages
(either single or multiple) was impractical. The alternative of allowing
each operating unit to select their systems was too expensive in capital
and revenue terms, and the development of bespoke systems using
conventional languages could not meet realistic targets for cost and time
scale.

Attention was therefore turned to the use of 4GLs and, in particular,
the Progress Software Corporation's PROGRESS Language. This was
chosen for its productivity, facilities robustness, reliability, operational
features, portability and cost and because it provided a single integrated
environment for the whole application.

The potential drawback was that there was little practical experience
and support within the UK, and consequently there were attendant risks
of relatively unproven performance in the field. It was feIt, therefore, that
the feasibility of the method should be established with a pilot project.

A specification was prepared for a stock control and material
traceability system. A clear definition of the objectives, milestones and
project control methods was established prior to commencement. These

www.manaraa.com

Case studies 85

objectives were used to prove the performance claims of PROGRESS
both in development and operation of a system.

An objective of a 50% reduction in development time was set and the
programming effort using conventional languages was estimated. The
time spent on every activity was recorded against the estimate and all
objectives were met, with many being improved upon dramatically. In
addition a number of other benefits in terms of ability to prototype,
robustness, user friendliness and ease of future enhancement and
maintenance became apparent. These would result in greater cost savings
in the future. The capability of the 4GL to be used for prototyping was
impressive and had clear benefits in guiding inexperienced users to
definitions of their requirements.

The objective of the project was to produce fully integrated business
systems for the decentralized operating companies in the group. It was
considered that certain key elements were required by all companies and
a specification was raised against this. This 'core' system was developed
using the 4GL and used as a prototype to demonstrate to the companies in
the group. Various packages written in PROGRESS were integrated with
the core system. The demonstration of the prototype was used to assist
users in producing a formal definition of their requirements. The
conventional process of producing operating procedures, staff training,
data capture and pilot running was followed leading to the
implementation of the system.

For each industry sector a 'major' site was nominated at which
extensive analysis was undertaken. A 'reference' site was used for each
sector to check the findings from the major site. It was recognized that for
the pilot project that there was a need to introduce a methodology and
Structured Systems Analysis and Design Methodology (SSADM) was
selected. However, the belated introduction of a methodology initially
slowed project progress. A more significant delay was caused by
problems of recruitment and a training scheme was introduced.

Each company was requested to form a working party which provided
the forum for discussion of the findings and initial design specifications
and a method of communicating with end users. A Business Systems
Definition (BSD) was produced using techniques from within SSADM
and was 'indexed' by a ProblemIRequirement list which identified where
and how a solution was proposed. At this stage, the working party was
requested to agree that data and functionality were correct in principle.

www.manaraa.com

86 Evolutionary not revolutionary change

Following this agreement in principle, the normalization techniques of
SSADM were used to produce the Database Schema, on which an
independent review was carried out, from which it was conc1uded that the
database was an efficient base on which to work. Programming of the
core, despite the systems complexity and other daily commitments,
exceeded the target set and project slippage was reduced. Programming
of the major programs was also carried out at this time and system testing
undertaken in parallel with this programming.

Working parties from all 12 companies in the group were given
presentations of the system, which were followed up by workshops where
end users and their managers were requested to use their own data and as
many problem scenarios as they could envisage. Despite higher levels of
work than anticipated there was a lower level of enhancement and
milestones continued to be met.

At this stage, two representative sites were chosen for the initial
'pilot' running and testing of the database and programs. This process led
to no functional or data changes but some enhancements were necessary
to improve user friendliness. This was followed by 'live' operation at the
two representative sites while at the same time 'pilot' operation was
underway at two other companies within the group in preparation for
'live' operation. Implementation of the remaining companies was planned
at the rate of two per quarter.

Targets were set in two major areas to assess the success of the
project. These were considered to be the improvements in time scale, cost
and quality of the systems produced and the resultant improvements in
performance of the operating companies. A number of objectives were
set by the operating companies for the purposes of monitoring the success
of the project and each site set a monetary value on these savings to
enable performance to be measured.

Within a diverse group the adoption of these methods allowed
modem, effective information systems to be more readily accepted and
used by staff in the operating units.

The use of a fourth generation language, in this case PROGRESS,
brought a number of advantages. A simple 4GL language could have
been used to offer the same facilities on UNIX and MSDOS based
machines. Improvements in productivity during the coding phase were
estimated to be at least 50% for 'complicated' programs and far greater
for simple enquiries and reports. However, some of these improvements
tended to be traded off against producing systems of higher quality.

www.manaraa.com

Case studies 87

Hence, future maintenance and enhancement were simplified and system
testing was found to be quicker.

There were benefits in the area of staffing, too. Training of new staff
without 4GL experience was found to be speedier. A staff structure based
on AnalystIProgrammers, rather than segregation of the two disciplines,
proved to be more effective with the introduction of a fourth generation
language and resulted in a smaller department.

The use of prototyping and piloting was very valuable. The
combination of these approaches improved communication and
understanding of the system.

A cost effective, cohesive and rational approach was taken to
development methodologies, operating systems, hardware and
applications resulting in cost savings. Effective systems were provided at
a cost equivalent to 3.5% of tumover. These systems required just 10
staff to service all 12 companies. The resulting lower cost systems
allowed IT to be applied to operating units where it would otherwise be
uneconomic.

However, a number of lessons have been leamt from the experience:

• The company found that it was essential to have a good analysis and
design methodology, otherwise it is difficult to move from the
prototype to the production model. A CASE tool should be considered
to support the methodology.

• As a result of their experiences, the company feIt that prototyping
must be used with caution. A balance must be struck between the
benefit of prototyping and the need to have the database design 'right
first time'. Good project control is even more essential as enthusiasm
for the facilities and prototyping can lead to 'over designed' solutions.

• It proved necessary to allow for the leaming curve for 'traditional
programmers'. Some of the traditional definitions of project phases
tend to become blurred, e.g. the aspect of training experienced during
the workshops. It is particularly important that all programrners
understand how the 4GL applies record locking or multi-user
problems may be experienced.

www.manaraa.com

88 Evolutionary not revolutionary change

• Finally, it was found that success could bring problems too. As users
saw the benefits reaped they tended to expand system boundaries by
using arguments that as the IT function could now respond quickly,
this 'smalI' request could be met.

6.4 SUMMARY

Any organization, whether it be in the public or private sector, will resist
change to a greater or lesser extent. That is, any organization will have:

• staff who are trained in, and used to, particular working practices;

• investment in existing hardware, whether this be in terms of computer
technology or machinery, etc.;

• staff who fear that any change may threaten their job security;

• reasons (whether or not they be sensible ones!) for keeping current
practices and systems and not wishing to take even the first steps of
any large change.

The introduction of CASE technology is no different in this respect.
The important points to remember when introducing CASE into an
organization are as follows.

• Change should be made in an evolutionary, iterative and gradual
manner.

• Revolutionary change is a recipe for disaster.

• Get staff commitment: this is vital.

• People are the most important factor in any change scenario.

• Effective staff training is essential.

• Productivity may not arise immediately but long term benefits must be
realized.

• New hardware and software must be planned and budgeted for.

• Cost justification is important but may be difficult to put together.

www.manaraa.com

Further reading 89

FURTHER READING

Peters, T. (1988) Thriving on Chaos, Macmillan, London.

Peters, T. and Waterman R. (1982) In Seareh 0/ Exeellenee, Harper and
Row, London.

Stacey, R. D. (1990) Dynamie Strategie Management /or the 1990s,
Kogan Page, London.

These texts provide detailed approaches to the management of
change.

Gilb, T. (1988) Principles 0/ Software Engineering Management,
Addison Wesley, Wokingham.

This text provides an excellent text on the use of evolutionary
techniques in software development.

www.manaraa.com

7

People matter

7.1 THE STAKEHOLDERS

Many innovations in the area of automation and computerization seem
paradoxically to lead to a greater emphasis upon the human and manual
processes they seek to replace. For example, many of us are farniliar with
the environmentally friendly paperless computerized office:

Fig. 7.1 The computerized 'paperless' office.

Whilst it might appear that CASE tools provide an increase in automation
and therefore should decrease the significance of the human role in the
process, the reverse appears to be true. The increase in technical
sophistication requires more careful management, the large initial outlay
requires enthusiastic senior management backup and belief and the re­
training commitment requires the co-operation of the system developers.

www.manaraa.com

The stakeholders 91

To maximize the chances of success, it is necessary to recognize the
different stakeholders in the software development process and their
aspirations. These are summarized in Table 7.1.

Table 7.1 Stakeholders in the software development process

Stakeholder

Customer

Tool user

Project manager

Quality manager

Senior management

Aspirations and fears

Wants a system with fewest errors that does what
they want at the lowest price in the shortest time

Fears that they may end up paying for expensive
tools

Wants a tool that makes their job easier, more
satisfying and more productive

Fears that tools may lead to de-skilling and
redundancy

Wants to deliver on time with fewest errors and to
satisfy the customer

Fears that change may disrupt the time sc ales and
cause problems with the staff

Wants to ensure that the delivered system is error­
free and meets the aspirations of the customer

Fears that the new tool may reduce the
individual' sattention to detail

Wants to see a return on investment

Wants to see an increase in productivity and
quality

Fears that this may be another IT white elephant

In this chapter we shall consider how each of these desires and fears
can be addressed, and then consider some examples where people issues
were critieal for one reason or another. Later, in Chapter 8, we shall
return to some of the themes discussed here and consider the corporate
and strategie implications.

www.manaraa.com

92 People matter

7.1.1 Customers

To consider the role of the customer in the success or otherwise of the
adoption of CASE tools let us return to the reason for adopting tools and
methods in the first place. Boehm's work (1981) on the cost of
maintenance as a function of the software lifecycle shown in Fig. 2.4, is
often used to justify CASE as a solution to the 'software crisis'.

Estimates of the percentage of the software development budget spent
on maintenance vary substantially, but it is generally agreed that this
figure is far too high, and that by improving the quality of the software
development process the number of errors can be reduced. In particular,
by eliminating errors earlier in the lifecycle, the cost of fixing errors can
be reduced.

The means of achieving this improvement, it is suggested, is the
adoption of CASE tools and methods. Whilst there are clearly benefits to
be gained in this area, a little care is needed in assessing their impact.

Consider first the number or errors. What is maintenance?
Maintenance effort is required when the system fails to perform in the
way that the customer wants. This may arise from one of two cases:

• Non-conformance to specification. The code departs from its
specification in performance. This corresponds to your traditional
'bug'.

• Inaccurate specification. The specification does not accurately reflect
the needs of the customer.

Structured methods were introduced originally to deal with the first
type of problem through the management of complexity. Their modern
counterparts, the methods at the heart of CASE tools, still reflect this.
There is an increasing awareness that much of the maintenance effort
arises from inaccurate specifications rather than coding errors. As CASE
tools improve and move towards better automated code generation, this
will become even more apparent.

These problems arise because of a lack of communication between the
system designers and the system users, illustrated in Fig. 7.2. The extent
of this problem was highlighted by one of the authors in a study which
showed that in the large companies visited, there was little or no dialogue
between systems providers and system users (Gillies, 1992a).

www.manaraa.com

The stakeholders 93

Qu'est-ce que c'est?
Je ne comprends pas

Fig. 7.2 Communication is crucial in establishing customer needs.

Some CASE vendors have suggested that the diagramming tools
provided with their products can provide a media for meaningful
communication between customers and developers. This idea has been
tested by one of the authors with little success. Whilst an entity­
relationship diagram, for example, provides a useful representation for a
system developer, it is not generally understood by non-technical
personnel. The nature of an information model has little meaning for
them.

What has been shown to be useful are rapid prototyping tools which
provide a quick and easy way to show customers the look and feel of the
product. This can further provide a basis for discussion which, if properly
handled, can draw from the user much useful information beyond simple
look and feel. Unfortunately, some CASE vendors seem to regard such
tools as peripheral at best to the main toolset provided.

Long term user satisfaction depends more upon a deeper
understanding of the needs of users and their problem. However, the
problem is not essentially one of technology; it is one of motivation on
the part of the system developer. They need to recognize that the

www.manaraa.com

94 People matter

customer has knowledge of the problem and the requirements of the
system which can save much time in the longer term. This need to get the
specification right at the start has been highlighted by Boehm (1981) in
his graph of the cost of fixing an error as a function of the stage of the
development life cycle, cited in Part One.

Thus errors fixed or prevented at the analysis phase represent a huge
saving for the company. Although, with the arrival of automated code
generation and other CASE tools, the fixing of errors later in the life
cycle has become easier and cheaper, prevention rather than cure is still
the best choice for cost control and customer satisfaction.

Errors arising from incorrect implementation of the specification
leading to system crashes or bugs are just as irritating to the customer as
errors in the specification itself. CASE tools and methods have the
potential to make a significant impact here. In particular, the use of
automated code generation offers the possibility of an error-free
representation of the specification in code. Again, this is yet to be
realized in practice, but continuing improvements in technology make
this a realistic possibility.

In this analysis thus far we have considered the customer as a
homogeneous group. However, the customers may be classified in two
ways, as shown in Fig. 7.3.

Internal External

User

Manager

Fig. 7.3 Customer matrix.

a) Internal vs. external customers
The principal advantage of the customer being inside the organization is
that there would appear to be a greater opportunity to develop a co­
operative relationship between system developers and system users. This

www.manaraa.com

The stakeholders 95

should provide better systems for the users and more understanding of the
needs of the system developers in providing such.

However, a study of such organizations (Gillies, 1992a) reveals that
this is simply not the case. There appears to be a complacency in the
attitude of many such departments towards their customers.

This is reinforced by other work (Davis et al., 1993) looking at the
adoption of systematic quality assurance procedures which showed that
the percentage of companies supplying IT systems and services to
external customers adopting certificated quality procedures is
considerably higher (58%) than in internal information systems
departments (12%).

The suppliers providing systems to external customers have to be seen
to be trying to overcome their natural disadvantage in knowledge of the
customers' business. However, whether this is a genuine concern and
whether there is time in the average contract to gain sufficient
understanding remains to be seen.

b) Users vs. managers
The second distinction which must be made amongst customers is
between users and managers. Whilst both have interests in common, their
priorities tend to be different. The manager customer has more power in
the overall process. They want a successful outcome but are constrained
by factors of budget and time and often therefore take a shorter term view
of what is required.

The user of the end system is more concerned with long term
satisfaction and is therefore more willing to accept a longer time scale if
it results in improvements to the system. However, they often have little
say in the process and this can lead to problems in the longer term as
managers accept compromise to get a system in place on time and within
budget.

7.1.2 Tool user

The user of the tool may not be very enthusiastic about it. This negative
response may arise from one of a number of reasons:

www.manaraa.com

96 People matter

• Fear;

• Resentment;

• A perceived lack of training.

These are illustrated in Fig. 7.4.

Fear. Resentment... What, no training at all?

Fig. 7.4 Reasons for a negative response.

Any change is likely to inspire insecurity. The introduction of automated
or semi-automated tools to the software development represents for the IT
community what the IT community has been doing for years to other
people. Therefore, the system developers know the likely outcome.

The general reasoning behind the introduction of tools and methods is
that it will increase productivity. Potentially, if this is realized, then this
may reduce the need for programmers and result in redundancies. This
provides a basic insecurity regarding the introduction of the technology.

Additionally, there is an implicit reflection upon the professional
integrity of the personnel if the tools and methods are being introduced to
address a perceived problem. Whilst it is not possible to eliminate these
fears and insecurities completely, it is essential to gain the co-operation
of the people who are going to use the tools and this may be assisted by a
conscious attempt to manage their anxieties.

First of all , there must be adequate explanation and training. No
amount of accurate information is as intimidating as a lack of
information. The training should emphasize three messages.

www.manaraa.com

The stakeholders 97

The first is that the tools are simply there to enable them to make
hetter use of the underlying methods and to automate the tedious parts of
their job. The system has adecision support role rather than a decision­
making role. They should make life easier and the tool never takes away
the need for judgement and expertise.

The potentially greater threat to their current working practices lies in
the underlying method. Therefore, the second point to be made is that the
CASE methods represent not a revolution in software design but an
evolution from the existing structured methods of which they almost
certainly are already aware.

The final message should perhaps not be communicated so forcefully.
To address the concems of staff regarding de-skilling and professional
integrity, it may be pointed out that developers familiar with state of the
art tools and methods are a highly valued resource within the market
place and that this change may greatly enhance their professional
development. If this point is made too vigorously, it may lead to problems
for the project manager, considered below.

7.1.3 Project manager

The project manager has perhaps the most difficult job of all. They have
to balance the pressures from all sides without having the overall
authority of their more senior management colleagues (Table 7.2).

Table 7.2 The project manager' s dilemma

Stakeholder

Managing customer

User customers

Development staff

Quality manager

Senior management

Expectation ofthe project and project manager

They want the project on time in budget and
working

They want a system which meets their aspirations
and needs

They want to be left to do their job

They want the system to conform to their quality
procedures

They want the introduction of the CASE methods
and tools to go smoothly

www.manaraa.com

98 People matter

They carry much of the responsibility but have little ultimate authority.
They may weIl regard the introduction of CASE tools as another pressure
imposed upon them.

The role of the project manager is to try to ensure that all interests are
represented and that a proper balance is achieved between the different
factors . They must balance the short and the long term view. The short
term view says that the project must be completed on time and that this
must take priority over all other factors . The longer term view says that
the tools and methods must be properly integrated into working practice
and that the project must be satisfactory in the longer term.

They must balance the need to keep their project team happy and
motivated whilst ensuring that the required level of change is introduced.
Further, they must endeavour to ensure continuity of staff so that
expertise gained is retained.

As Fig. 7.5 illustrates, if they fail there are plenty of people waiting to
pounce. Finally, the project manager must be absolutely convinced of the
merits and benefits of the methods, tools and management procedures
adopted. Otherwise they will find it impossible to convince the others.

Fig. 7.5 The project manager is pulled in many different directions.

www.manaraa.com

7.1.4 Quality manager

WOT, NO QUALITY
MANAGER?

The stakeholders 99

Fig. 7.640% of companies surveyed had no QA function at all .

Many companies probably do not have a quality manager! In arecent
survey (Davis et al. , 1993), over 40% of companies did not even claim to
have a QA function for software development. However, it is to be hoped
that the companies considering CASE tools and methods are among the
more enlightened.

Like the project manager, the quality manager must also balance short
and long term goals. In the long term, their job conceming the
implementation of CASE is to integrate the new working methods and
practices into an overall scheme which will provide improved quality to
the customer. The introduction of CASE methods and tools should in the
long term assist in at least some areas of quality.

However, the short term effects are likely to be quite the reverse.
Disruption of existing practice will result in longer time scales reflected
in slower delivery to the customer. Unfamiliarity with tools in the short
term is likely to increase errors and bugs. New working practices may
invalidate existing acquired wisdom on quality issues.

The quality manager should be a useful resource in what is a difficult
time for the organization. They should have experience of managing
change and introducing new working practices.

In any organization where thought has been given to improving the
quality of software, the introduction of CASE tools and methods should
be seen as part of the process of continual improvement. In fact, this is
true of any organization. In an organization without a quality
improvement process, the introduction of a CASE method and tool can
only have a limited impact.

www.manaraa.com

100 People matter

7.1.5 Senior management

'The future of this company is IT. I am behind you 100%.'

Fig.7.7 A lack of genuine senior management support can kill any project.

In any innovation within an organization, the support of senior
management is crucial. Everyone seems to have worked in an
organization at some time where an edict has come down from on high
only to be followed by practical experience that shows that it is a case
(CASE?) of 'do as I say not as I do'. Nothing kills an innovation more
quickly than this senior management hypocrisy.

However, there are also specific reasons why CASE tools and
methods require particular support if they are to succeed. Principal
amongst these is the long time scale before benefits are realized. There
will be aperiod during which quality will fall, productivity will fall and
there will inevitably be pressure on management to reverse the changes
that have been made.

Only if the support for the new working practices goes right to the top
will the organization persevere with CASE at this stage. Other managers
within the organization simply do not have the authority to carry things
through. In particular, the project managers, if committed to the new
methods themselves, must feel that in a crisis they will receive the
backing of the senior management.

www.manaraa.com

Case studies 101

Fig. 7.8 Without senior backing other managers will not succeed.

The level of commitment of senior management may be gauged at the
start of the project if the short term problems are adequately presented. It
is disastrous to avoid these issues in presentations to senior management
in order to push the project through, as this support will evaporate at the
first sign of short term problems.

However, for senior managers themselves, there remains the
fundamental issue of whether they should support the adoption of CASE
and its associated investment. In simple terms, the answer is that CASE is
not an end in itself but a means to achieving hetter systems. It is therefore
only worthy of support as part of an overall strategy to enable the IT
function to meet business needs better. The content of that strategy is
discussed in Chapter 8.

7.2 CASE STUDIES

7.2.1 The pallet company

The first example is a successful company which produces wooden
pallets. It has at its disposal the resources of 35 people, 300 customers,

www.manaraa.com

102 People matter

2000 stock lines, 11 items of manufacturing plant and approximately
H'2M of employed financial resources. It has 1000 different pallet types,
produces 700 000 pallets per year giving a sales value of f:3.5M and
operates a 'just in time' system for deliveries of pallets on demand.

The company, whilst being heavily involved in manufacturing,
believes it is a service operation. It is important to recognize that a pallet
is not just a pallet but part of the unit load. The unit load consists of the
design of the pallet for particular customers, the loads to be carried, the
shrink wrap, the securing method and the method of movement of the
pallet. It is the company' s commercial strategy to become the recognized
experts in the provision of efficient design and supply of unit load
equipment.

The company believes that IT has an integral part to play in the
realization of the commercial strategy. It also believes that it is necessary
that all people in the company are convinced of the benefits of IT, not
only to the company, but to their own personal development. To this end
the company has invested heavily in IT. They instalIed an off-the-shelf
accounting package in 1983. This was followed by the development of a
bespoke production control and costing system in 1985 and a customer
care system in 1987.

7.2.2 Tbe systems

The production control and costing system was a bespoke system because
off-the-shelf packages available at the time would have required much
custornization and a change in working practices. The system has
provided numerous benefits for the company and has amply repaid the
investment in its development. Profits have gone up 20% per year over a
five year period. The price of the bespoke system was similar to
off-the-shelf packages and the total system' s cost, hardware and software,
was approximately f:30 000.

The customer care system contains all the information that relates
directly to the customer. If a member of staff is in telephone contact with
a customer all the information is immediately accessible to answer any
questions conceming the status of their orders. Working in tandem with
the customer care system, and integrated with it, is the management
information and forecasting system which takes information from the
customer care system and prepares a wide variety of analyses. These
analyses provide the company with information such as profitability of

www.manaraa.com

Case studies 103

customers, sales people, products, industry sector, forecast against actual
sales, direct labour cost, materials cost and gross profit. The total system
cost, hardware and software, was approximately ;[40 000.

The bespoke systems were developed using a software prototyping
method. The problem was discussed between the system developer and
the managers and users. Software engineering methods were used to build
a model of the business. The model of the business consisted of a data
model (entity-relationship) and a process model (data flow diagram).
These graphical models were used as the main communication between
the company and the consultants. They helped to gain an understanding
of how the company worked before the construction of the computer
system started. The business model was then entered into a CASE tool
called SOURCEWRITER, which generated the computer software. The
computer software was then used by the users to ensure it was producing
what was required.

After further discussion between the users and the systems developers
the business model was altered and the cyc1e repeated. The verification
loop to the system designer ensures that the system is built correctly,
whilst the validation loop between the software and users ensures that the
right system is built. This development method, using a CASE tool,
guarantees that the engineered software system is what the users require,
and not what the system developers thought they required.

7.2.3 Reasons for success

There were other reasons for the success of the two bespoke systems. The
most important was strong top leadership involvement, with the Chief
Executive Officer driving the project forward, not doing it but driving it!
Through good communications the committed users in the organization
are completely sold on the idea of succeeding with IT. This suggests that
small companies who do not have staff with IT knowledge should seek
expert advice.

This is not the end of the story. The future plans are to link the
systems and provide a completely integrated data base of information
throughout the company. They also intend to allow their customers to
access the computer systems so that they can see the status of their orders.
They believe that they will have to appoint an IT manager who will
become as vital as the accountant in the running of the business.

www.manaraa.com

104 People matter

7.2.4 The company

The second company in this section is aUS toy manufacturer, owned by a
larger more diverse organization. Their toys have been available in the
UK since the early 1930s, but there were no significant sales until the
early to mid 1970s, when both the UK and Continental markets were
developed through distributors. Growth has been rapid, and today's
organization, with European sales of around 70m per year, consists of
two manufacturingldistribution sites in the UK and Belgium, and sales
companies in the main markets of UK, France, Germany, Benelux, Spain
and Italy.

In the mid-1980s, the decision was taken to replace all current System
34 systems with System 38. Re-development of the sales and distribution
systems followed. Live running began two years later at the first site at
Peterlee in County Durham. The remaining sites in Belgium, France and
Germany were due to start live running one year later.

7.2.5 The background

The business systems had heen running since the beginning of 1983.
These were designed as integrated single site systems, i.e. on the basis
that each site was operating as aseparate unit. Since then operations and
management have become far more centralized, particularly in the areas
of stock and distribution. Systems have been adapted, but they are,
nevertheless, running in a way for which they were not originally
designed.

Re-development was, therefore, needed to overcome eXlstmg
problems and to bring systems into line with current business needs. A
secondary aim was to improve the general use and effectiveness of IT in
the company.

7.2.6 The scope of the project

The sales and distribution systems cover the following business
applications:

• order processing and invoicing

• stock control and distribution

• customer accounting

www.manaraa.com

Case studies 105

• sales and order statistics.

A single, integrated system has been developed, which will support all
the company' s sales sites. It is run on a centrally located System 38, with
remote sites linked by leased lines.

7.2.7 The use of software engineering tools

In the short term, most of the difficulties facing the development team
arose from the rapid change of technical environment, combined with
tight deadlines.

• Live running was scheduled for just 18 months after delivery of the
hardware. This left little time to assimilate the new environment,
analyse the requirements of a multi-national user community, design
and code the new systems.

• System 34 and System 38 were found to be radically different
environments. This difference was accentuated by the change from
COBOL to RPG III. Coding ability was, therefore, significantly
weakened: overnight the accumulated reservoir of COBOL code was
lost: RPG coding has to be started from scratch.

• Revisions to design and specifications were constantly required, both
because of improving technical knowledge, and (as with any project)
changing user requirements.

The traditional long term problems that were faced inc1uded aligning
systems to the needs of the business, a quicker response to user requests
and a growing application backlog.

Having identified a coding bottleneck, it was decided to investigate
automatic code generation. With only a short time available, and as only
two viable products were known, the selection process was simple and
short. From a prelirninary examination one product was selected and set
up for a two month trial period with full time usage by four development
staff. From this, it was decided to continue its use for the whole project.

www.manaraa.com

J 06 People matter

The following conc1usions were drawn:

• As the product was designed as an expert system, the knowledge base
could continue to be increased and refined. This would allow
inefficient code to be controlled.

• Areduction in program coding time was achievable. This inc1uded
complex programs.

• Programs, files and fields could all be designed, specified and
documented through the product.

The justification, therefore, was that, for a relatively modest cost, the
company would at least be able to generate skeleton code to replace the
missing COBOL reservoir; at best they could be laying the foundations
for a productive 4th generation environment.

7.2.8 The issues and challenges

Overall, there was a very positive staff attitude to the use of the tools: it
was apparent early on that development staff would not be 'de-skilled',
and that a good level of technical expertise was still required. In addition,
a high proportion of staff were involved, thus avoiding the feeling of an
'exc1usive' pilot project. Although relatively little training was required
to leam basic use of the tool, there was a heavy leaming curve for its
effective use. Consequently, there were initial los ses in productivity,
resulting in some problems of morale.

One significant side effect of the tool was the integration of the
specification and coding processes. This did help to speed up
development, but also proved a problem at first. Time was lost in
preparing a traditional detailed specification, and using the tool to try to
reproduce the required code. Instead a more functional outline
specification was needed, enabling the tool to function more as the detail
program designer. The project team had to leam to work with the tools
rather than against them, which did require a change in approach by both
data-processing and user staff.

All interactive programs were developed using the tools. However,
not all applications were totaliy suited to automated development, and
some time could have been saved if more selectivity had been employed.
In particular, some applications would have been developed more

www.manaraa.com

Summary 107

efficiently through generation of a skeleton, followed by manual
completion. Some programs where development was 'forced' have had
response time problems in the live environment.

Within the project, estimating and control has been a constant
problem. New, simplified project control and reporting procedures had to
be developed to cope with the new environment.

The benefits to the company are seen as better planning, a change in
working practices resulting in better design, a more functional approach
to systems development and standardized code produced more quickly.

7.2.9 One year later

The new systems were implemented on schedule. Twelve months later,
the systems were due to be implemented at all the company' s European
sites. However, this remaining development was almost all batch work,
and use of the 4GL tool was consequently at a very low level. Coupled
with this, most of the technical staff who had worked on the project had
by this stage left the company, leaving nobody with in-depth knowledge
of the product. The company were, therefore, facing a total re-build of
their environment.

One fact is very apparent. Whatever the environment, 4GL or
otherwise, success depends on recruiting and holding the right staff. This
company failed to retain the staff and therefore lost the expertise gained.
During the year, however, they had gathered enough experience to
recognize the potential benefits of software engineering methods and
tools. They therefore faced the task of reviving their 4GL environment,
following the European implementation programme.

7.3 SUMMARY

In this chapter, we have considered the roles of people within the
software development process and seen how they are affected by the
introduction of CASE methods and tools.

Wehave also considered how their own fears and aspirations can
control their response, and have suggested ways that these may be
managed to increase the probability of a successful outcome. The first
case study has illustrated the importance of top management support. The
second shows how an apparently successful implementation can be

www.manaraa.com

108 People matter

stopped in its tracks if the staff and their associated acquired expertise
cannot be retained.

The lesson which must be learnt if tools and methods are to lead to
successful solutions is that people matter. Each of the stakeholders in the
process has their own aspirations and fears. The management of these
aspirations and fears is crucial to the successful implementation of CASE
tools and methods. This has several consequences for the adoption of
CASE methods and tools:

• Common business and technology objectives must be defined and
worked towards by different individuals or organizations inc1uding IT
and user personnel.

• Leadership and staff motivation are vital if these objectives are to be
met.

• Staff must be enabled to work efficiently in producing quality systems.
This means inc1uding the working environment which research has
shown to be so critical, the necessary finance and the technology,
otherwise known as methods and tools.

• Training is crucial.

• IT is introduced in the form of projects so that the administrative
techniques of project management are part of the engineering process.

• The introduction of new methods and tools involves change, and hand
in glove with change goes the associated risk, so that the management
of the two is an intrinsic part of the development process.

Software engineering is not just a question of methods and tools. It is
the management of people and the effect of change upon them.

FURTHER READING

The texts listed at the end of Chapter 6 by Peters (1988), Peters and
Waterman (1982) and Stacey (1990) are also relevant here. In addition,
the introduction of quality management ideas is dealt with in Chapter 7 of

Gillies, A.C (1992) Software quality: theory and management, Chapman
& Hall, London.

www.manaraa.com

8

Consultants can help*

8.1 CONSULTANTS: WHO NEEDS THEM?

In an ideal world there would be no consultants. The need for consultants
is a response to a number of problems facing the potential user of CASE
tools and methods:

• Expertise in the use of methods and particularly tools is scarce and
therefore expensive.

• Expertise is acquired through use, and therefore by definition new
users are lacking in expertise.

• Current methods and tools are not intuitive and do not guide the user
sufficiently to enable new users to avoid pitfalls.

In short, there is a need for an expert in the use of tools to assist new
users until such expertise is acquired by the users. However, whilst an
external consultant may understand the method and tool to be used, they
will not have a detailed knowledge of the problem domain and the nature
of the business. Therefore, they must acquire knowledge as weH as impart
it.

In this chapter we shall consider the case where a consultant is
brought in not simply to implement a system using CASE, but rather to
assist in the establishment of CASE methods and tools for use by the
organization themselves.

* The authors would like to acknowledge the contribution of Paul Ross and Colin
Hardy to the material presented in this chapter.

www.manaraa.com

110 Consultants can help

8.2 THE ROLE OF THE CONSULT ANT

8.2.1 Bridging the knowledge gap

Fig. 8.1 Consultants can seem expensive.

The first image that the word 'consultant' conjures up in anyone's mind
will usually vary depending upon their previous experience (or lack of
experience) of the use of such people.
That is, they may view consultants as useful, widely experienced
individuals who can bring their vast experience to bear on the problem in
hand, and thus produce a quality and cost-effective solution. On the other
hand (and at the opposite end of the spectrum) they may view a
consultant as a very expensive alternative to doing the job oneself!

There are, however, considerable gains to be made by employing the
skills of an effective consultant, provided that they are effective. The key
problem facing a consultant is the 'knowledge gap' that exists between
themselves and their customer. They must acquire knowledge of the
problem domain itself in order to apply their own expertise effectively.
This problem of knowledge acquisition has been much studied in the
specific context of acquiring knowledge for the development of expert
systems (Hart, 1989). However, the subject of knowledge acquisition has
now grown beyond this spe<;ific area and the techniques are widely
applied in a variety of applications.

www.manaraa.com

Consultants: who needs them? 111

Fig. 8.2 First capture your knowledge. A good consultant will listen!

8.2.2 Knowledge acquisition

The process of knowledge acquisition is the first stage of knowledge
engineering in the same way that requirements analysis is the first stage
of software engineering. Thus the consultant requires many of the same
skills as a knowledge engineer.

However, unlike a systems analyst or a knowledge engineer building a
system, the consultant assisting others to use CASE tools does not have
as his primary goal a set of requirements or collection of heuristics.
Instead their role is to gather knowledge about the problem domain,
combine it with knowledge about the use of the specific method and tool
to be used and increase the expertise of the users of the tool to the point
where they can become effective users of the tool themselves.

If a consultant simply comes in and carries out ·the job of using the
tool without imparting knowledge, then the next time the tool is required,
the consultant will be required again. Thus, the role of the consultant
requires technical, interpersonal, organizational and managerial skills.

www.manaraa.com

112 Consultants can help

McGraw and Briggs (1989) have constructed a wish list of knowledge
engineer skills, which includes the following attributes:

• fast learner

• effective communicator

• knowledge acquisition techniques

• organized, good record-keeper

• conceptualises weIl

• knowledge in many diverse areas.

To this we may add a number of additional skills specific to our
CASE consultant:

• ability to impart knowledge

• detailed knowledge of the CASE tool and method.

They note that many of the tasks carried out by knowledge engineers
are identical or similar to those associated with consultants in more
conventional computer based information systems, i.e.

• analysing information flow

• determining program structure

• working with experts to obtain information

• performing design functions.

The role of CASE consultant requires a skill mix which overlaps the
traditional role of analyst and programmer combining the interpersonal
skills of the analyst with the technical skills of a programmer. In a survey
recently of the requirements of knowledge engineering, seen similarly as
requiring a broader skill mix than traditional systems analysis or
programming, Awad (1992) identified the following skills:

www.manaraa.com

Consultants: who needs them? 113

• part systems analyst

• part psychologist

• part interviewer

• part problem solver

• experience

• logical reasoning capabilities

• communication skills

• team working

• working with domain experts

• programming skills

• creativity

• dealing with uncertainty during information gathering.

Awad and Lindgren (1992) also note that many of the personality
traits of the successful knowledge engineer are similar to those of any
good consultant, and they cite the following as important factors

• creativity

• intelligence

• an ability to think logically

• pragmatism

• responsibility.

The knowledge engineer clearly performs a function that is in many
ways very similar to that of the systems analyst: however, in addition to
the usual system development tasks of dealing with users and
management, a major role for the knowledge engineer is to elicit

www.manaraa.com

114 Consultants can help

knowledge from an expert, who is hopefully a willing participant in the
system development process (but might not bel).

So the knowledge engineer must have the interpersonal skills and
experience to facilitate the management of expert egos, reluctant
participants, personality clashes and so on.

Our CASE consultant must do all of this if he wishes to acquire the
knowledge of the business he requires, and be able to impart knowledge
as weIl. The cost of a good consultant may start to seem more reasonable
in the light of these requirements.

8.2.3 Benefits

We have all heard horror stories about the expensive consultants who
cost a lot and gave little in return. However, in practice a good consultant
will bring a number of benefits.

They should have a wide range of experiences, from a wide and
differing range of companies and market sectors. All of these experiences
can be brought to bear in the solution of your problem. They will be
impartial, and not involved in internal politics and will not have a
particular 'axe to grind'.

c

Fig. 8.3 Consultants are above internal politics and have no axe to grind.

They will have time to devote solely to the project. If you devote one
of your own people to it, it is quite likely that they will also have every
day company matters to deal with. A consultant will be a member of a

www.manaraa.com

Case studies 115

professional body, and will have to adhere to certain professional codes
ofconduct.

8.2.4 Choosing a consultant

The previous sections have highlighted the wide range of skills required
by consultants. Many people tend to feel that the consultants that they
employ are overpaid and not up to the job. It is therefore essential to find
an appropriate and competent consultant for your needs.

A consultant may be perfectly competent but inappropriate for your
needs. For example, a consultant who has only had experience of the
London Stock Exchange is unlikely to be appropriate for the needs of a
philanthropie housing association.

Similarly, a consultant may be appropriate but incompetent. It is a sad
fact that many people who have high ethieal ideals and might be very
sympathetic to the aims of the organization have no idea how a business
needs to operate.

Table 8.1 summarizes the criteria for selecting a consultant for
appropriateness and competence.

8.3 CASE STUDIES

The case studies describe a range of experiences with consultants, from a
traditional knowledge acquisition project whieh led to an implemented
system to examples where the consultants enabled the organizations to
implement CASE methods and tools.

8.3.1 A knowledge-based system (KBS) for fault diagnosis

The dient company in this case study is a machine intensive operation,
manufacturing plastic containers, using an extrusion thermo-forming
process. They represent one company within an international federation
of companies associated with the manufacture and distribution of vending
and food serviees packaging.

Each stage of the products manufacture is handled by the company,
from the raw materials to packaging and distribution. One of its central
concerns, whieh keeps it in line with BS5750 (a quality management
standard discussed in Chapter 12), is the quality of the product.

www.manaraa.com

116 Consultants can help

Table 8.1 Selecting a consultant

Area Criteria Considerations

Appropriateness Experience Where has the consultant gained experience?
Increasingly consultancy companies are
recruiting practitioners and training them in
CASE methods and tools.

Competence

Skills

Culture

Experience

Skills

Are their skills transferable to your domain?
Where the consultant has demonstrated
capability in a related area, their skills are more
likely to be applicable.

Have they worked in similar organizations?
Since the consultants will be working closely
with your existing staff it is important that they
fit in with the existing organizational culture.

How much actual experience do they have?

Since the consultants are coming in as 'experts',
it is reasonable to assume that they should be
able to demonstrate adequate experience.

Do they have the required mix of skilIs?
As has been stated, the required skill mix is
broad. However, since consultants command
high fees, they should provide the requisite skill
mix.

References Can they provide names of satisfied customers?
There is no substitute for a personal
recommendation. Ideally, this would be
someone known to you, but failing that they
should be able to name reference sites.

Professionalism Consultants should be members of a
professional body. This should guarantee
minimum standards of behaviour and
performance and provide a mechanism for
resolving any disputes which may arise in the
worst cases.

www.manaraa.com

Case studies 117

This is monitored manually both by the operator and the Quality
Assurance Department. Since the output of these machines can exceed
80 000 items per hour, it is also financially critical to keep the product
within specification, and thus avoid down-time.

The operators at the user company were sufficiently well trained to be
able to deal with a limited number of c1early defined product-based
problems. However, when problems were unfamiliar, or did not respond
to initial adjustments, expert diagnosis was obtained either from more
experienced operators or from production or development personnel. As
is typical of such situations, having to bring someone in takes valuable
time, and takes the expert away from whatever they were involved in.

The task was, therefore, to develop a knowledge based diagnosis
system that could be used primarily by the operators to assist in their
operations. The user company also hoped to use the software as evidence
of the potential of knowledge based system development within the
company, and possibly the group.

A consultant was appointed to determine the knowledge required by
such a system and implement a system based upon that knowledge. Their
main point of contact in the user company was an experienced middle
manager; consequently, he was the individual who determined the main
character of the KBS to be developed. The consultant also had contact
with two other employees, a production engineer and an experienced
operator/trainer.

All three were involved in knowledge acquisition sessions, but it was
the production engineer who was used as the key expert within the
development. The specification of the problem domain was assisted by
the fact that the project engineer had been given responsibility for a
particular machine within the production line. This machine, which puts
the curled lip on vending machine cups, performs its role immediately
before packaging. Consequently, this was a vital location to determine
those problems which were large enough to damage the product, but may
have slipped through the checks carried out by the operator up to that
point.

Whilst visually the problems affecting the cups are not large, the
product is flawed, and can lead to customer dissatisfaction. It is also
probably the hardest point to determine the cause of the problem, since it
could feasibly have been caused at any of one or more points throughout
the process.

www.manaraa.com

118 Consultants can help

There are nine typical problems that can occur to a cup, that would be
picked up at the rim curler. In discussion with the experts, it was decided
to break these problems down into three phases, each dealing with three
problems. For the KBS, it was decided to deal with one phase, which
covered the three most common problems; a hot wrinkle, which is
generally caused by the melting of a thin product; an open curl, which to
a large extent, is the opposite of hot wrinkle; and dust or hairs, associated
with scuffing or poor trimming of the rim.

Using a dient-centred approach meant that the consultant needed a
dear understanding not only of the problem areas, but also of what the
dient wanted the system to do. From their descriptions, it was apparent
that what they required was a system that standardized the procedures
used by the experts and senior operators in their diagnosis of particular
problems. This suggested adecision tree model.

Adecision tree approach does not necessarily require that the system
contain the problem solving heuristics of the expert. It operates on the
principle that an expert applies their heuristics to a given problem, and
that the resultant decisions are coded. This generates a representation
where the decisions are 'hard-wired'; that is, aH possible responses from
the system are coded. This type of model is relatively easy to develop
compared to eliciting and then representing expert heuristics, which are
often difficult to articulate.

Software development was undertaken in Crystal. Crystal is an expert
system sheH which offers a large number of in-buHt menu-driven
functions. Although its inference mechanism is one of backward
chaining, its basic operation is one of adecision tree. This fitted weH with
the knowledge representation mechanism chosen for the KBS.

Crystal allowed the consultant to create a knowledge based system
whose size and complexity exceeded the demands of the user company.
The central knowledge base consisted of 1407 commands in 402 mIes,
using 139 variables. There were four product specification knowledge
bases with their associated export files, and the file used to hold the form
feed variable. .

In this case study the software appears to have exceeded the
expectations made of it, and the project was very successful. Although
the main reason for the success was undoubtedly the skills and abilities of
the consultant concemed, the experts whose knowledge was acquired
were also extremely keen to assist in the process. The outcome may weH

www.manaraa.com

Case studies 119

have been otherwise, had there been problems in acquiring the
knowledge.

Although the purpose of knowledge acquisition in this case was to
implement a system, it was dependent upon the process of knowledge
acquisition. It illustrates the importance of identifying key individuals in
the company and securing their co-operation.

8.3.2 Commodity trading systems development

Tbe consultancy concemed in this scenario was set up in 1979 and is now
established as a leading consultancy for high technology research and
innovation in the North of England. It provides a range of consultancy
and commercial services in software, hardware development and
microelectronics. Current and past research projects involve projects
under the UK Alvey programme and the European Esprit and RACE
programmes.

In total, the consultancy has 1221 staff with a tumover of over f7M
p.a. Involvement in research activities has enabled the consultancy to
develop a high level of in-house expertise in a number of methodologies
and tools which are applied in their commercial, training and
manufacturing operations.

Tbe dient company in this scenario was established in 1969 in the
North of England, in response to requests from farmers for an efficient
and economical centralized grain drying, storing and trading facility
which would buy or store grain. Tight margins need efficient
administration and cash flow controls.

Tbe rural location restricted the availability of skilled book-keepers
and the decision to computerize all the administrative systems was taken
in the early 1980s. Tbe consultancy assisted in the completion of this and
the user company is today one of the largest grain storage businesses in
the country.

By the late 1980s, some system inadequacies had become apparent
and the decision was made to develop a new system with an expected
future life of five to ten years. Whilst the original development used good
software engineering practices, it did not use any tools or core software
packages such as a Database Management System (DBMS), Structured
Query Language (SQL) and Fourth Generation Languages (4GL).

www.manaraa.com

120 Consultants can help

Based on the consultancy's own constant research and development
activities, the use of tools was envisaged in three phases, namely design,
implementation and project management.

The consultancy's stated requirement was to identify tools which
would increase the productivity and quality of software which was
suitable for the complexity of the user company's system and would
allow them maximum involvement, simple maintenance, self­
documentation and flexible and extensible system development.

After considerable external and in-house research, the consultancy
settled on the Y ourdon methodology for the design tool, with their
expertise leading to reducing risk and the leaming curve, because of the
short project time scale.

The 4GL used for implementation was selected from a short list
inc1uding ACCELL, ORACLE, INFORMIX 4GL and SCULPTOR. Each
of these was considered to be good in its own right and ACCELL most
c10sely approached the requirements of the user company. For project
management purposes, HORNET is used as a standard by the
consultancy, and was employed during this project.

The project had a target duration of seven months. Technical
complexity, user amendments and price constraints all contributed to an
overrun of three elapsed weeks.

The project was recognized to be a leaming experience for both the
user company and the consultancy, particularly in the areas of the
Y ourdon design methodology and toolkit and the ACCELL fourth
generation language. The Y ourdon design toolkit proved to be easy to
leam and simple to modify. The toolkit produced consistent and
modifiable diagrarns whilst providing automatic verification and cross­
checking. This in turn produced major productivity gains in the speed of
verification and confidence in the system design. The generation of a data
dictionary was also considered to be a major advantage.

Whilst the general impression was positive, it should be noted that
there were no productivity benefits in initial generation of diagrarns and
the lack of a data transfer link to the 4GL tool was a disadvantage and a
potential source of integrity problems.

The ACCELL 4GL tool used was also popular. The basic features of
the system proved easy to leam, although the full features of the 4GL
required a lengthy familiarization. Particularly well received were the
facilities for screen painting and rapid screen prototyping. On the other

www.manaraa.com

Case studies 121

hand, the manual entry of database design was somewhat laborious and
the design was affected by the capabilities of the 4GL system.

The user company received a larger system of greater functionality,
developed over a shorter period and at a lower cost than the previous
system. This was due to the successful implementation of the new
methods and tools. This success was built upon the effectiveness of the
consultants applying their technical expertise to the business problems of
the dient company. The consultants as weIl as the dients have leamt
from the experience. The tools have contributed to this saving and future
developments will benefit more as the consultancy build up their
experience and knowledge both in the use of these tools and in the system
itself.

8.3.3 IT system design in medium-sized manufacturing companies

The consultant in this case study had been an independent computer
consultant and developer of bespoke software for six years before his
involvement in these projects. Before that he spent three years in general
management, a year teaching, and three years in systems analysis and
computer programming.

His main areas of business expertise are in financial control,
production control, production scheduling, stock control, sales order
processing, purchase order processing and management information
systems. He has also been involved with stock-broking and service
companies.

Over the last eight years, he has gained experience in software for
accounts, stock control, sales order processing, purchase order
processing, word-processing, spreadsheets, electronic offices and
databases. Nearly all the bespoke software has been written to integrate
with packaged accounting software and to meet the requirements of
company operations where no suitable packaged software has been
available.

This background provided the consultant with a very broad range of
skills enabling hirn to operate effectively as a consultant. This case study
describes experiences in helping three manufacturing companies.
Company A employs 35 people, has 300 customers, 2000 stock lines and
manufactures 1000 pallet types. Eleven main items of manufacturing
plant are used to produce 700 000 pallets per annum, and generate B.5M
of sales.

www.manaraa.com

122 Consultants can help

An integrated computer system has been successfully implemented for
estimating, sales order processing, stock control, production planning,
production control, job costing, bonus calculations, management
information, and a very comprehensive customer care system.

The management of the company feels that the computer system has
been a major factor in achieving the following benefits:

• Profits were increased by 20% per annum over the last five years.

• Tumover was increased by 15% per annum.

• Stock was reduced by ;(100 000.

• Instant access was provided to a large volume of customer
information.

• Management reports were up-to-date and weIl presented.

• Period-end accounts were prepared on time.

The computer system consists of approximately 250 programs and
250 000 lines of code, of which 2500 were hand coded. The programs
ron on a Novell network with 10 terminals and 150Mbyte of on-line
storage. Besides the bespoke computer programs, the company uses
packaged software for the nominal, sales and purchase ledgers,
spreadsheets, small databases, and word-processing.

Companies Band C are also manufacturing companies that have
implemented computer systems in similar business areas to Company A,
but the systems are completely different in all three cases.

A company' s method of operating will be influenced by its market,
the products it makes, its method of manufacture, the size of the batches
of products that it manufactures and the management style of the
directors. All of these factors dictate what the ideal computer system for a
company will be like.

Consider sales order processing for the three companies. Company A
makes 90% of its production to order and 10% to stock. Most of the raw
materials are bought on forecasts of requirements. Company B makes all
products to order but keeps stocks of some raw materials based on market
forecasts and buys the remainder for customers' orders. Company C
makes all products to order and buys all board (its main raw material) for
customers' orders. In the business area of sales order processing we

www.manaraa.com

Case studies 123

obviously have two extremes and a wide variety of cases in the middle.
Situations range from buying all raw materials for customers' orders and
manufacturing only upon receipt of a customer's order, to forecasting
market trends and buying all raw materials and manufacturing according
to forecasts.

An effective IT solution requires the planning, design, management
and direction of the writing and implementation of a bespoke computer
system that meets the company' s requirements. The aim in all cases is
always to increase the effectiveness, efficiency and profitability of the
business, and never to promote 'technical wizardry' for its own sake.

In all three cases described, a structured systems analysis and design
method was used to develop the systems. Within the method, use was
made of two data modelling techniques, entity-relationship diagrams and
data flow diagrams. All the systems discussed are data processing
systems. The foundation of these systems is an Entity-Relationship (E-R)
model. This is used to define the relationships between the records in the
files in the system.

At the same time, businesses are dynamic organizations and are totally
dependent on information and data flows. Data flow diagrams are used to
show the flow of data through the system.

In most data processing systems, the processing of data at any one
point is usually very simple, the complexity is contained in the
relationships between the records in the files. By combining the E-R
model and the data flow diagram it is possible to build up a very
comprehensive picture of the business. At this stage it is often possible to
see ways of eliminating superfluous processes from the administration of
a business.

In the above companies, a CASE tool was used called
SOURCEWRITER. This is a COBOL code generator for developing
interactive and report programs. It is primarily a tool for the systems
analyst, designer and programmer.

The COBOLl2 Workbench was used for development. This is more
than a COBOL compiler: it is a complete COBOL development system.
COBOL was selected for the development language because it formed a
total product with SOURCEWRITER. It is flexible, standard, has a large
range of target machines, and the best compilers are very highly tuned for
performance.

The hardware development platform employed was a powerful IBM
PC or compatible with a large fixed disk unit. The hardware can run

www.manaraa.com

124 Consultants can help

under MS-DOS, OS/2, Novel Netware, or XENIXlUNIX. A total
development system of this type which can be used by two or three
system developers can be bought for under flO 000. However, before
effective use could be made of these tools and techniques, it proved
necessary to ensure that a good working relationship existed between
managers, computer users, and the computer developers.

Other considerations when selecting development software which had
to be taken into consideration inc1uded :

• trade-offs between performance and development costs

• run time licence costs

• 10ngevity of suppliers

• 10ngevity of computer code

• ongoing CASE tool development.

Experience has shown that it is unproductive to tune precisely the vast
majority of bespoke programs. It is far better to invest in more powerful
hardware and improve the performance of all programs in the system.
When comparing development systems, run time licences can vary in
price. For an eight user system running under Novel Netware, a run time
system for COBOL may cost approximately f200, whereas for a typical
4GL it could cost 1:5000.

The systems developed have all been business system driven, and very
specific to the company involved. Users of the system have been totally
involved in its development. The CASE tool involved generated bug-free
programs. The right business system for the company has been developed
and implemented.

SOURCEWRITER proved to be an effective tool. However, there
remain a number of limitations found in use. The tool has no facilities for
generating batch processing applications. There is no automatic
generation of inter-file ca1culations and there remains a need for hand
written code.

There proved to be a learning curve to c1imb for both users and
developers. For the developer, it takes time to master the methods,
techniques and CASE tool employed. The user must leam about the
development method, and about the management of projects using these
tools and techniques.

www.manaraa.com

Case studies 125

There are a number of advantages to the consultant or software house.
The interactive development process with the client brings benefits in
terms of better communication and understanding, leading to greater
client loyalty to the project and the product, as weIl as a product which
serves the clients needs better. On the technical side, there are advantages
with increased code productivity, less maintenance and easier
implementation.

The client, too, has much to gain. The production of a bespoke
business system should ensure that the system matches business needs.
The client shares the benefits of continuous involvement in development
which should result in easier implementation and installation. The result
should be a reliable system proving cost-effective through economic
development and low maintenance. It should also provide a growth path
for the future.

8.3.4 Computer integrated manufacture (CIM) ofprestige cars

The consultancy in this case study provides assistance on the effective
use of IT, particularly in manufacturing companies. To date their clients
include major automotive and aerospace companies, as weIl as other
major private and public concems. They have also been involved in a
number of ESPRIT and Eureka projects in the area of CIM strategy.

There is no universal definition of computer integrated
manufacturing (CIM). In simple terms, CIM may be viewed as the
effective use of IT in the engineering/manufacturing sector of industry.
However, it is possible to lay down three principles CIM: integration
of information, integration of activities and a consistent and coherent
approach to the management of the enterprise.

To provide an efficient and responsive enterprise which meets its
customer' s needs and market demands, the integration of all company
activities and information is essential. Information is the company's most
valuable asset; it needs to be coherent, accurate and available at all times.

CIM involves the linking/integration of aB the business functions in
the manufacturing organization to form an efficient, responsive and
unified enterprise. Thus, CIM is not a system that you can buy and
implement ovemight. Companies need to adopt a structured view of their
operations if they are to define clear operating procedures and
requirements. Furthermore, knowledge about company activities is
essential for good management.

www.manaraa.com

126 Consultants can help

There are many benefits whieh ean be derived from a successful
implementation of CIM. In the case of the Automotive Company
involved in this ease study, the following business objeetives were
identified:

• increase production

• increase inventory turnover

• improve productivity

• reduce lead-time.

These objeetives were to be aehieved within a five year time scale.
Having established that CIM was a vehic1e for achieving these

objectives and that a strategy for CIM was required, the need for a
methodology to develop and implement CIM was identified.

In this case, IDEF-O modelling was identified as a suitable approach.
It is a top-down hierarehical decomposition teehnique. The results are
expressed as better aetivities, information and material flows, eonstraints
and control management with fewer resourees used.

The stages for establishing a CIM strategy (or IT strategy in
manufacturing) using IDEF-O modelling may defined like this:

First, it is necessary to establish the business objectives.
Onee this has been achieved, then a funetional model of the existing

eompany operations should be built, i.e. an 'as is' model. This is a top­
down functional model of the eompany expressed in better information
and material flows, better constraint and eontrol meehanisms and fewer
resources used.

This model is then subjected to a strueturedlc1inical analysis against
the objectives in order to eliminate duplieation and other waste and to
identify and solve ineonsisteney. From the above stage, a 'should be'
model of the company is eonstructed, showing how the company should
operate to achieve its stated objectives.

This final 'should be' model ean be used in various ways. It can assist
with the ereation of speeifieations for funetional and integration
requirements for an IT solution. Additionally, it ean be used in the
formulation of operating proeedures, planning and training requirements
and during implementation.

For the purpose of this ease study, the automotive eompany may be
split into two sections:

www.manaraa.com

Case studies 127

• Corporate, which embodies the strategic/tactical functions of the
business; and

• Operations, consisting of aseries of mini-factories which make the
different sub-assemblies making up the car.

This structure was reflected in the project team in that two groups
were formed to undertake the various modelling tasks. A planning group
was set up to look at production planning, commercial design and
production engineering.

The other group concemed itself with operations, looking at four
mini-factories which are representative of the rest. These were engine
assembly and test, miscellaneous machining, car body shell and bolt-on
items (doors, wipers, etc.).

The final generic 'should be' model was proved and tested in two
'mini-factories', namely the engine assembly and test and miscellaneous
machining. The consultancy was contracted again to deliver two
prototype software packages, a part program management system and a
tool management system.

Miscellaneous machining manufactures a wide range of components.
In particular, Cell 11 of the 'mini-factory' produces housings for water
pumps. To machine these parts, the computer numerically controlled
(CNC) machine tools require, for each part, proven and post-processed
part-programs which contain the machining instructions.

These part-programs start life on the CAD/CAM systems when,
having designed apart, a tool path is generated and subsequently post­
processed ('cross-compiled') for a particular CNC machine too1. This
program would then have to be proved using various techniques such as
simulation. The requirement was that for each component three copies of
a part-program had to be held in a database: two previous versions and a
current version. Every time the design of an existing part is modified, the
part-program must be modified and proved accordingly.

Given that there are a large number of parts which are subject to
design modifications and given the archiving and traceability
requirements, there is a need to hold these growing numbers of part­
programs and manage their use effectively. Allied with part-program
information, tooling information for geometry, type, tool number and life
is always required. This tooling information needs to be held and
managed in a similar way to the part-programs.

www.manaraa.com

128 Consultants can help

The software development methodology used was based upon the
principles of structured analysis and design and was based upon the use
of diagramming techniques such as Jackson. The IDEF-O model of the
miscellaneous machining provided the framework to produce data flow
diagrams and other models necessary for the specification of the
software. Because the two packages were prototypes, the emphasis was
on improving the quality and productivity of the analysis, design, and
specification stages of the software development process.

Prokit WORKBENCH, a proprietary analyst workbench CASE tool
supplied by McDonneH Douglas, was chosen to provide the environment
for generating data flow diagrams (DFDs), Jackson's diagrams of the
various processes and all the software documentation.

As far as the actual strategy and software projects were concemed, it
is important to note that they were all completed within time scale and
budget and met their functionality. This is in itself a major benefit.
Clearly CIM can provide many benefits if a top-down strategie approach
is adopted as in this case.

The main ingredients for success in this case were darity of
objective, adoption of a top-down methodology for formulation of an IT
strategy and the use of CASE tools for software development.

In this case, the requirements of the dients were very complex
involving the automation of manufacturing as weH as the computerization
of business processes. Without the specific expertise of the consultancy,
it seems unlikely that the company could have achieved the required
degree of expertise to implement the changes.

The choice of consultants was crucial. By making use of a
consultancy with specific expertise and experience in computer-integrated
manufacturing the dient ensured that the consultancy provided was both
appropriate and competent.

8.4 SUMMARY

This chapter has discussed the role which consultants can play in IT
system development, and has focused upon four case studies where the
use of a consultant has dearly benefited the companies concemed. These
benefits have accrued largely as a direct result of the consultant' s own
high level of expertise in IT system design, and experience of the solution
of problems whieh are of direct relevance to the problem domain in
question.

www.manaraa.com

The key points identified are:

• CASE expertise is scarce.

• Consultancy requires a broad mix of skills.

• Choose an appropriate consultant.

• Choose a competent consultant.

Further reading 129

• Consultants are not cheap but a good one can prove cost-effective.

• Make sure that you both understand the project to be undertaken.

• Communication between the consultant and the staff of the company
is a key issue.

• Set out c1ear initial objectives.

• The role of the consultant is to impart knowledge as well as to
complete the project.

FURTHER READING

Hart, A.E. (1989) Knowledge acquisition for expert systems 2nd edn,
Chapman & Hall, London,

In spite of its title, this text will be of use to all those acquiring
knowledge for whatever purpose.

White, M. and Goldsmith, J. (1990) Knowledge Engineering: Handbook
ofTheory and Practice, Systemsware Corp.

This is the manual of the International Association of Knowledge
Engineers (lAKE).

www.manaraa.com

9

The long term view

9.1 THE NEED FOR THE LONG TERM VIEW

The long term view is not always popular in any business. The need to
show a profit within a fixed accounting period provides a strong incentive
for short term-ism.

The IT community has grown used to a rapid rate of change in
technology. This actively discourages a long term view. Many of the
business functions already computerized such as accounts, payroll and
document production show relatively quick returns on investment
through rapid increases in productivity. Thus business customers have
come to expect a quick return on their investment.

The computerizatioh of software development is not like these other
functions. It is a complex process requiring changes in working practices
which will lead initially to a decrease in productivity and quality.
Therefore the road to a return on the investment is a long one.

The initial investment is made up of a number of components:

• The cost of tools and associated hardware.

• The cost of consultancy support for the introduction of the above.

• The cost of staff re-training.

• The cost of lower productivity.

• The cost of lower quality.

• The cost of maintenance and upgrades for the tools themselves.

Although this rnight appear to be a one-off capital investment, only
the initial cost of tools is a true one-off capital cost. The remaining costs
will be spread over aperiod, probably a number of years.

www.manaraa.com

The need Jor the long term view 131

Due to the rapid rate of change in the IT environment, evaluation of
costs and benefits is rarely carried out. Where people have tried to do so,
the comparison is made very difficult by the constantly changing
development environment. One Australian study (Low and Jeffrey, 1991)
considered the effect of introducing back end CASE tools into an
organization. This is potentially less disruptive than adopting fully blown
integrated CASE tools.

The study compared the impact of two different tools, in three
organizations, and compared the use of the tools with the use of
conventional techniques. However, because the second part of the study
involved only three projects in two different organizations, we shall
discount this and consider only the first part taking 8 CASE-based
projects out of a total of 59 within the same organization and using the
same too1.

These results show the impact of the use of a back end CASE tool on
productivity measured as the mean system size divided by the mean effort
over a five year period in the same organization and using the same too1.

In the study, productivity was defined in total hours of staff time
inc1uding both developer and user staff time, and the system size in terms
of function points as defined by Sprouls (1990).

Table 9.1 The impact of a back end CASE tool (after Low and Jeffrey,1991)

Approach Systems Mean effort (man Mean system size Mean productivity
months) (function points) (function points

per staJf day)

Manual 51 14.9 164 3.86 (0 = 3.7)

CASE tool 8 15.0 286 4.15 (0 = 3.7)

Since this study considered a five year period, one might reasonably
consider that the benefits of CASE would be c1early visible, but in spite
of a gain in the mean productivity, the large dispersion of the results leads
to the conc1usion that the results are not statistically significant:

www.manaraa.com

132 The long term view

No of projects

Significance tests

t = -1.08 P = 0.286

Not significant

Improvement •

Fig.9.1 No statistically significant improvements in one study.

Productivity

Whilst these results are from only one organization, they represent
one of the few well-constructed long term studies. The study went on to
consider whether the expectation that initial productivity would be
lowered was born out in practice. The effort for each project was
predicted by a regression line with equation:

effort = 3.143* (Function points)3.835 (9.1)

This was compared with the actual effort for each project taken in
order of project start. The results, shown in Fig. 9.2, are derived from
only 8 projects and cannot therefore be regarded as statistically
significant, although they do suggest that productivity increases as
experience of CASE tools grows. However, examination of the staff
involved in each project reveals that, as in many organizations, the
staffing situation is flexible, and that experience of the actual tool users
was variable.

www.manaraa.com

The need for the long term view 133

3

2.5

2
0

i ...
1:: 1.5
0 :a::
w

1

0.5

0

Project

Fig. 9.2 The ratio of predicted versus actual effort for projects in chronological order.

The fit of the regression analysis improves substantially if staff
experience is taken into account using a model suggested by Boehm
(1981), using a five point scale ranging from 1 (very experienced)
through 3 (average) to 5 (very inexperienced). The results are shown in
Table 9.2.
Table 9.2 The impact of a back end CASE tool (after Low and Jeffrey,1991)

Factors Equation Statistical measures

p F r2

size e=3.857*(fp)3.471 3.17 5.39 3.25

size e=3. 857*(fp)3.471 *(xpf)3.747 3.0022 26.3 3.91
and experience

fp = size in function points where
and xpf = experience measured as per Boehm (1981).

Again, the sampie of only 8 suggests caution, but the results do
suggest that staff experience entering a project plays a major part in the
productivity of a project. Projects 3 and 8, the most highly productive by
a considerable margin, had by far the most experienced staff:

www.manaraa.com

134 The long term view

Table 9.3 Staff experience factor project by project

Project 1 2 3 4 5 6 7 8

Experience 5 5 3 4 3 4

where 5 is no relevant experience
and 1 is staff experienced in using tool on recent project.

Low and Jeffrey draw the following conc1usions from their own study:

• The introduction of CASE may lead initially to a reduction in
productivity.

• Whilst improvements are possible even if staff have litde actual
experience in the use of the tool, these will be greatly enhanced by
effective training prior to the project.

• Higher productivity is achieved when the staff involved have prior
experience of the CASE too1.

This empirical study reinforces the view that the initial effects of
CASE implementation will be negative. Further, this study deals only
with the introduction of back-end CASE tools. The introduction of a fully
blown integrated approach involves greater complexity and more people
and extends the consequences outside the immediate group of tool users.

One c1ear advantage of introducing back end tools is that the impact is
largely contained within the project teams. Once CASE is introduced into
the analysis and design phases of the life cyc1e the impact affects users as
weH, the complexity increases and the time to profit increases (Fig. 9.3).

www.manaraa.com

The needfor the long term view 135

Fig. 9.3 The more change is introduced, the Jonger to profit.

If the expectation of management is that CASE tools can be
introduced on the same time scale as other computerization processes,
then the expectations will be disappointed. Whereas computerization in
office automation or business transaction can bring immediate benefits
and repay investment in a matter of months or at least a year or so, the
time-scale for benefits from CASE is measured in years. This is
illustrated schematically in Fig. 9.4. The precise time taken will vary
according to existing experience of structure methods in general and tools
in particular.

The first milestone to be reached, represented by t1 in Fig. 9.4, is the
point at which the tools start to reduce the cost of producing software by
lower maintenance and greater productivity.

However, it is only at t2 that the cost of the initial investment is re­
couped by the savings made and, therefore, the overall project starts to
show a profit. It will be even later before the process can claim areturn
on the sum invested.

This costlbenefit equation reinforces the need to take a long term view
of the process. It also illustrates the importance of senior management
commitment, as without this support the project is likely to be aborted
before a net benefit can be achieved.

www.manaraa.com

J 36 The long term view

Savings or costs from implementing CASE

t
1

Culmulalive savings or costs from implementing CASE

Fig. 9.4 Schematic illustration of the long term payoff of CASE tools.

www.manaraa.com

Reducing the time to benefits 137

However, it also suggests that an alternative implementation strategy
should be adopted which can bring in benefits more quicldy. It has
already been suggested that an evolutionary approach to CASE
implementation is advisable.

The cost/benefit profile of this kind of approach will be considered
next.

9.2 REDUCING THE TIME TO BENEFITS

There are no true short cuts to achieving full benefit from CASE methods
and tools. However, by introducing the process in incremental fashion,
the costs can be balanced against benefits achieved through partial
implementation .. Further, the risk of failure is significantly reduced.

The key observation here is that the major benefits from CASE arise
not from tools but from the underlying methods. It is also perceived by
some users that only if the methods and tool are introduced separately can
the underlying methods be properly understood and appreciated. This
implies that the greatest 10ng term benefit will be gained from separate
introduction of tools and methods. An implementation process of this
type is shown in Fig. 9.5.

This type of process may be considered in terms of costs and benefits
in three stages. The three principal stages are:

• introduction of methods

• limited automation

• full automation.

The process may be stopped at the end of each of these stages with the
benefits accrued up to that stage intact. Some companies may well choose
to stop after limited automation, as the third stage offers the most risk and
the highest cost.

www.manaraa.com

138 The long term view

Training in methods

Implement methods

[J-1

Evaluale project

~

Implement aids

LH'----------'
Evaluate project

~

Training in tools
.--...... - ...

Implement lools LHr-------.

Evaluate projects

~
Fig. 9.5 An incremental model of implementation.

www.manaraa.com

Reducing the time to benefits 139

Each stage consists of training, implementation and evaluation. The
importance of training in gaining productivity benefits is demonstrated by
a number of studies inc1uding the Australian study. It has also been
highlighted that its absence is a major factor in failure.

Its effect upon the costJsaving curve over time is to raise initial cost
but reduce time to profit:
saving

cost

time

with training

without training

Fig.9.6 The effect of training upon the time to cost benefit function.

The main costs associated with this phase are training costs and the
cost associated with the process of change. However, the amount of
knowledge to be assimilated is smaller than a fully blown tool
implementation and the degree of change for the developer is less as they
do not have to familiarize themselves with the mechanics of a new too1.

Thus this part of the process has a shorter learning time than the fully
blown implementation and will quickly start to bring benefits in the form
of lower eITor rates and greater productivity. In particular, although
analysis and design may take longer even after familiarization, coding
becomes quicker in a short space of time and cOITection of code in later
stages will be streamlined through fewer eITors. In an earlier chapter, we
have seen how Boehm predicts that the cost of eITor cOITection rises
logarithmically through the life cyc1e so that improvements in analysis,
even if not seen in productivity rise in this phase, will be reflected in
improvements later in development. One company committed to
introducing better methods, Sherwood Computer Services, (Gillies,
1992b) introduced SSADM as their CASE method and then, having
evaluated suitable tools, did not implement tools but retained paper-based

www.manaraa.com

140 The long term view

procedures. At a limited cost, they were able to show substantial
productivity and quality benefits in a considerably shorter time scale than
if they had implemented tools as weIl. As a consequence, they were able
to deli ver a new product to the market place on time and within budget.

A further advantage is the ability to evaluate the procedure used and
feed back information leading to improvements more quickly than by a
fully blown integrated technique.

However, there are still gains to be made by automation. Automation
does not however have to be complete. It mayaiso be carried out in
incremental stages. The simplest and most cost effective task to automate
is the task of diagram production. This may be done using a very simple
drawing tool.

Fig.9.7 Using a drawing tool is effective, but lacks street credibility!

www.manaraa.com

Reducing the time to benefits 141

The advantages of this simple automation process are the same as the
advantages of basic word processing for document production:

• ease of update and change

• ease of storage

• automatic dating of diagrams

• use of templates and libraries

• litde training required.

Because of its simplicity, this automation can bring benefit quickly
and therefore cheaply. It has litde or no negative disruptive effect upon
patterns of working. However, it does have the problem of a lack of
credibility.

Other tools of this type are those which fit with manual methods and
automate or assist part of the process. One of the attractions of back end
CASE tools such as Telon is that they allow programmers to adjust the
code and, in particular, to correct small errors which may arise without
the need to regenerate the whole piece of code.

A further group of companies has adopted solutions of this kind and
made the decision not to proceed further. However, should a full
integrated CASE tool implementation be sought, the approach offers a
number of advantages over proceeding with a full implementation
straight away:

• By the time that a large investment in tools and hardware is required,
the benefits should be weIl established.

• The savings from methods and simple tools can be used to fund
further investment.

• The knowledge gained earlier will be invaluable in implementing the
full method and tools.

• The knowledge about the method and the tool will be clearly
separated, aiding understanding, reducing training times and
increasing productivity earlier leading to greater benefits sooner.

The cost benefit function over time is illustrated in Fig. 9.8.

www.manaraa.com

142 The long term view

Savings and cost trom incremental CASE implemenlalion

Methods implemented
Initial costs

Tolal savings and cosls trom incremenlal CASE implementalion

Fig. 9.8 The saving/cost profile for an incremental implementation.

www.manaraa.com

Case study 143

Whatever approach to implementation is adopted, a long term view is
required. A c1ear strategy is required with realistic business goals and
associated IT goals.

The Obig bang' implementation of a fully integrated CASE approach
is no short cut to the benefits that can be realized and often appears
superficially attractive because this is not appreciated.

The following case study describes a CASE success story. It describes
the changes within a manufacturing company over aperiod of seven
years. During that time senior management was always committed to the
changes and c1early focused upon the long term goals.

9.3 CASE STUDY

The company is a division of the world's leading manufacturer of
adhesive backed materials, operating on a 24 hour, 7 day a week basis. To
retain its market position and to compete internationally the company
needs to improve its customer service constantly through product
innovation and quality, delivery reliability and short lead times as well as
achieving high levels of plant utilization.

Adhesive backed materials are produced in a two stage manufacturing
process. The first stage, termed coating, involves applying an adhesive to
the base material and completing the sandwich with a disposable backing
material. This backing substrate protects the adhesive until the product is
finally used in many diverse applications from the re-badging of the
British Airways aircraft fleet to first aid bandages.

After coating, the product is usually in the form of 1000-3500 metre
rolls either 1 or 2 metres wide. The second stage of production is called
finishing. Here the rolls are either slit and rewound into smaller rolls
called cheeses or cut into sheets of various dimensions and packed into
boxes. Both sheets and cheeses are subsequently die-cut into labels and
finally printed, usually by the customer.

Companies can be found which are good at manufacturing. However,
fewer are good at marketing. It is only rarely that companies are good at
both.

The company believes that business success sterns from a harmonious
blend of expert and aggressive marketing combined with innovative
exploitation of manufacturing technology. The life blood of this harmony
is information, and continuing the analogy, the arteries and veins for its
circulation are high quality information systems. Quality systems in this

www.manaraa.com

144 The long term view

context are systems which answer the needs of the business, both
efficiently and effectively.

It is the company's belief, therefore, that marketing, manufacturing
and information technology strategies can no longer be developed in
isolation. They should be developed proactively and in an integrated
fashion to satisfy customer needs, both existing and latent, to gain
significant competitive advantage. This has not always been the case.

The company categorizes organizations according to the competitive
role of manufacturing and associated information systems (if any). They
may be categorized into four grades, summarized in Table 9.4.

Table 9.4 Categories of role of manufacturing

Grade Description

2

3

4

A service to marketing

Copy industry practice

Adopt an integrated
strategy

Exploit competitive
advantage

Characteristics

This type of company is dominated by its
marketing department, with the manufacturing
function being kept in the dark.

Manufacturing has rather more status in these
companies, but limits its investment to copying
the processes and systems of similar companies
within its industry sector.

At this level, manufacturing has reached the status
of having its own recognized strategy which is
developed to satisfy the requirements of the
marketing, financial and corporate strategies of
the company. Although raised in prominence, it
still fulfils a reactive as opposed to proactive role
in business strategy.

Companies in this group develop integrated
product and market manufacturing strategies. In
such cases, manufacturing technology and
information systems playa proactive role in
repositioning their competitive product within the
market.

www.manaraa.com

Case study 145

In 1990, the company was managing the transition from Grade 3 to
Grade 4. By contrast, before 1983, they were a very successful Grade 2
company which operated in the high volume commodities and specialities
sectors of the industry.

Success came from product and market differentiation strategies
which were buHt upon core skills in marketing and new product
development. As European market leaders in their sector, the company's
reputation had been buHt upon providing high quality, innovative
products with excellent customer service for which a high premium could
be charged.
The business environment changed dramatically in 1983 due to the entry
of new competitors from Scandinavia. They had a significantly higher
degree of vertical integration from the forest to adhesive labels, together
with significant investment in process automation and manufacturing
information systems. They were able to move the basis of competition in
the commodities sector away from product and market differentiation
towards superiority through low cost production. The presence and
activities of small focused producers local to their major customers
increased the company' s need for speed and flexibility of service
standards, particularly in distribution. The competitors' activities
presented a significant threat to the premiums that could be commanded
on service.

To protect its market leadership, the company was forced to reassess
its marketing and manufacturing activities and philosophies, together
with the role of IT. Up to this point IT had merely provided electronic
accountancy systems.

Quality and service objectives were to be met by a multi-million
pound investment in process equipment and information systems to
achieve computer integrated manufacture by the mid 90s. This was
coupled with a policy of non-strategic divestment to optimize the market
share/profitability balance. No longer was manufacturing perceived as
just a support function to marketing, it was now treated as a strategic
weapon of equal or greater firepower.

Manufacturing efficiencies would be gained by the introduction of
plant specialization aligned to the needs of specific market segments.
Increased service levels would be gained by the implementation of new
market-Ied manufacturing strategies. These would reduce delivery from 6

www.manaraa.com

146 The long term view

weeks to a guaranteed 3 - 7 days, whilst maintaining quality and reducing
costs.

The successful implementation of these strategies was dependent
upon the fast and effective development of new manufacturing
information systems for decision support and production control.
Unfortunately the company had a centralized data processing department,
based in Holland, which was tied to COBOL development within the
traditionallife cyc1e.

This meant that:

• Users were generally presented with requirements analysis documents
that would have taken months to read yet alone understand.

• Systems development took too long and could not react to the rapid
changes in the business environment. Indeed the department was
already three years and $4.5m into the development of a particular
production control system, which the new strategies would make
obsolete.

• There was a great deal of animosity between them and the production
plants, in particular the principal UK site.

To achieve this philosophy and implement the desired manufacturing
information systems at the principal UK site meant the adoption of
in-plant development centres. Essentially, these were manufacturing
information centres supported by software engineering methods and
productivity tools. They were staffed by business analysts, not
technicians. The company chose the bespoke route since prior experience
had shown that package solutions needed too much tailoring to the
environment and were certainly not the panaceas that the vendors
c1aimed.

In the mid-1980s, the principal UK site instalied an IBM Series 1 in
what was to become its manufacturing information centre. The PICK
operating system was adopted to ensure the potential for maximum user
ownership and participation in system design and development. This
incorporates a relational database, active data dictionary, screen and line
editors, ACCESS, an ad hoc query language and an enhanced Databasic
programming language. To facilitate fast systems development by
business analysts as opposed to programmers, an extremely powerful and
easy to use application generator called System Builder was also adopted.

www.manaraa.com

Case study 147

when I see it !

Fig. 9.9 Users were often unable to discuss their requirements.

The method of software development adopted was prototyping of two
types, incremental and throw away. These methods were used because
users were unable to express their requirements fully in the rapidly
changing environment discussed (Fig. 9.9). Indeed, interaction with the
system could considerably change requirements.

The company decided to avoid the Obig bang' approach to CIM
implementation in favour of pilot studies to assess the viability of the
strategies. Without the tools previously discussed, such a development
strategy would not have been possible.

At the time of installing the IBM system, the company was
experiencing very high levels of scrap in both the coating and finishing
operations. Pre-production losses were running at around 6% (of raw
material purchases) and coating and finishing scrap at 7-7.5%. Since 1 %
scrap was equivalent to f250 000 per annum and there were no
computerized information systems to address the problem, it was given
top priority. It was decided to address the problem using the software
engineering method and tools described.

Two business analysis students were given the task of producing a
time and materials recording system prototype with on-line shop floor
data capture on one of the company's coating lines. Within two months
the students had implemented a fully functional prototype system and had

www.manaraa.com

148 The long term view

trained the production operatives, who had been consulted at every stage
of development. This has been used as the basis for the development of a
plant-wide time and materials recording system with bar code data
collection. This provides the input to areal-time accounting system.

The tremendous success of this project has spurred the development
of many other strategie manufacturing information systems, notably:

• CUSA: Customer stock allocation system to support the pilot study of
a new manufacturing strategy at the principal UK site.

• PINNET: A networked system for loading and scheduling production
on the slitting machines.

With these projects, the company's experience of software
development using software engineering methods and tools has grown.
This maturity has led the company to adopt front end analysis tools for
data modelling to impose more discipline in the development process.

The major benefits that were gained were:

• The methods and tools provided the vehicle to develop production
monitoring and control systems very quickly and cost effectively.

• The systems are directly suited to the company's needs whereas
package based solutions would have required significant
modifications.

• The CAPM learning curve was made easier by being involved in the
systems development as opposed to being given a package which
would then have required many months of training and modification.

• The company could not have successfully controlled its manufacturing
processes in a time of rapid change without fast and flexible
information systems development.

• All manufacturing personnel were actively involved throughout the
systems life cycle. Arecent survey showed a significantly higher
degree of user satisfaction with these systems as opposed to those
developed using more traditional methods.

www.manaraa.com

Summary 149

• Since the company was entering unknown operating procedures, the
system requirements were very ill structured. The methods used coped
well with this need for evolutionary systems development.

• The stranglehold of a tradition bound data processing department was
broken allowing measures of performance based upon business
effectiveness rather than technical effectiveness.

The manufacturing information systems developed over the period
described (1983-1990) are now the lifeblood of the company's
operations. They have significantly helped the company in maintaining
their market leadership. Without them, the company could never have
achieved its aim of manufacturing excellence. Equally, without software
engineering methods and tools, the systems could not have been
developed.

Despite technology and the automation that it can bring, the
implementation of CASE, the manner in which it is used and the
development of successful systems are entirely dependent upon the
people involved, both IT staff and users. If entrenched attitudes had not
been changed, then nothing could have been achieved. Hence people,
their attitudes and the company culture were the most important
considerations in this company's path towards excellence.

What is striking in this case is the company's long term view of
success and commitment to long term strategic goals. The projects and
benefits described were realized over a seven year period from 1983 to
1990. This long term view enabled them to gain the fuH advantage of the
use of CASE for their information systems and enabled the IT function to
support the manufacturing function in pursuit of their goals.

This long term view is an important part of the cultural values needed
for a successful CASE implementation, and gaining and keeping people's
commitment to long term goals is crucial to success.

9.4 SUMMARY

The crucial message of this chapter is that unlike previous information
technologies, the pay-off from CASE will only come in the long term.
The benefits will not be seen in the first year or possibly two and the
initial costs are high. The time before overall savings are made depends
upon the mode of implementation. Although the big bang appears

www.manaraa.com

150 The long term view

attractive, it is a high risk strategy which may not produce the highest or
quickest return.

Crucial to the success in the long term is strong senior management
commitment. Without this, the implementation is likely to be aborted
before any benefit is seen, possibly at great cost to the company. The
lessons from this chapter are:

• CASE tools are expensive and will not provide a quick return on
investment.

• A long term strategy is required.

• Senior management must be committed to it.

• Incremental introduction of methods and tools can provide a more cost
effective solution.

• Experienced staff produce much greater benefits and must be retained.

FURTHER READING

Low, G.c. and Jeffrey, D.R. (1991) Software development productivity
and back end CASE tools, Information and Software Technology, 33
(9) 616-621.

The paper provides full details of this Australian study.

Boehm, B. (1981) Software Engineering Economics, Prentice-Hall, New
York.

This classic text provides a theoretical background for any
costlbenefit analysis carried out on software projects.

www.manaraa.com

10

The problem with existing systems

10.1 EXISTING SYSTEMS

When the use of CASE is described, in text books and particularly in the
promotional literature associated with a CASE tool it is often assumed
that you are designing and implementing a new application with no
previous system to replace or current system to be integrated. This is
particularly true of the integrated methods and tools designed to cover the
whole life cyc1e, as part of their attractiveness is their self-containedness.
By contrast, the SSADM method, designed to cover the analysis and
design phases, requires its users to consider first the existing systems.

Very occasionally, such a 'green field site' arises, and the first case
study describes such a situation. However far more common is the
situation where existing systems are already in place. In the first part of
this chapter we shall consider the problem of how to take account of such
systems within current CASE technology. In the second, we shall
consider reverse engineering which offers the advantages of CASE tools
and methods for old and existing systems.

In most cases, a system being implemented replaces an existing
information system. The existing system may be not be in the form of a
computerized system, but this is of secondary importance. In some cases,
the system to be written will have to integrate with other computer
systems. In all cases, the system will have to integrate with an existing
human system.

CASE methods may be c1assified according to their starting point, as
described in Table 10.1.

www.manaraa.com

152 The problem with existing systems

Table 10.1 Classification of CASE methods according to starting point

Examples

Advantages

Front end methods starting
with existing systems

SSADM

Forces consideration of
existing systems

Integrated methods starting
with strategie view

Information Engineering,
ORACLE

Integrity of approach

Allows user to implement Strategie view
design with an existing
integrated information system Elegant solution

Disadvantages Can lead to piecemeal
approach to system design

Can inhibit innovative
solutions

Less integrity than integrated
approach

Code generated is not
transparent

Difficult or impossible to use
in conjunction with existing
systems

SSADM starts with an analysis of the performance, operation and
problems associated with the current system, where such a system exists.

The purpose of this approach is to:

• allow the analysts to leam the terminology and functionality of the
users' environment;

• provide for investigation of current data;

• introduce users to the techniques used within SSADM; and

• define limits for the project.

The rest of the process then attempts to evolve the system from the
current design to the new requirements. There is an assumption made to

www.manaraa.com

Existing systems 153

justify this process that although processes may change, underlying data
needs do not vary enormously.

This approach places the need to take account of existing systems as a
very high priority. The criticism that is made is that the process does not
encourage innovation and change, and lacks a strategic view.

The alternative class of methods includes Information Engineering
and ORACLE's proprietary method, both of whieh emphasize strategy,
coverage of the whole life cycle and integration. Their suppliers claim
that integration with existing systems is feasible and that the systems may
co-exist until the existing systems may be converted or replaced.
Practitioners' experience suggests otherwise.

Within an integrated approach starting with the global information
strategy, the analysis phase follows as a direct consequence of the
strategie information plan. This encourages a more cohesive view of
systems and is superficially more appealing. However, in practiee, the
existence of existing systems whieh may not fit the neat global pieture
can ruin the elegant cohesion (Fig. 10.1).

This has forced at least one organization to adopt an integrated CASE
tool for their new projects where there is litt1e or no computerization of
the existing system, but, retain other more fragmented methods for those
projects whieh must integrate with existing computer systems.

The failure of CASE method and too1 vendors to agree on
interchangeab1e standards for CASE is reminiscent of the old days of
proprietary mainframes, when the major p1ayers such as IBM, DEC and
ICL tried to tie customers in to their own systems.

Thus it wou1d appear that integrated CASE too1 vendors are
attempting to establish sites where the who1e of systems development is
tied into their development methods and tools. This would appear to be
an unwise commercial strategy as all sites will have existing systems and
the current state of reverse engineering does not allow the existing
systems to be easily transformed into a CASE-compatib1e form.

An organization with a substantial investment in existing integrated
management information systems appears to have only two options at
present, illustrated in Fig. 10.2.

www.manaraa.com

154 The problem with existing systems

Global strategie view

Implemented
Systems view

Fig. 10.1 Existing systems may not fit comfortably in a strategie view.

Gombination of

GASE methods

Fig. 10.2 Two-pronged approach.

Integrated GASE

method

www.manaraa.com

Existing systems 155

Both of these represent partial solutions. These approaches are based
upon the practice of a large company faced with these problems. They
actually use both approaches in parallel.

10.1.1 Option 1: partial automation

In this strategy, the solution adopted is to apply CASE methods and tools
to the first half of the life cyc1e. This can be achieved either through the
front end of an integrated tool or the use of a front end tool itself.

,/ ,71 CASE method;

. Analyse .. / automated if desired

r"/ Design [)
'--/-:::======7]::":";';
I Implement I~
/" 7]
I Test I/

CASE method;

manually implemented

may be assisted by use of back end tool

/ 7]
linstall I/

/ 7]
IL--M_a_in_ta_in_----'-'I/

Fig. 10.3 Option I: partial automation.

This leaves the latter part of the cyc1e to be carried out manually. In
practice, this can be improved by the use of a back end CASE tool such
as Telon. These tools will largely automate code generation but allow
manual adaptation to incorporate facilities for integration with other
applications. What is more important, they produce transparent and
accessible code, unlike the code produced by most integrated tools which
is incomprehensible to 'encourage' developers to use the tool the way
that it was intended: as a complete package.

However, this fragmented use of tools does not provide the data
integrity of an integrated approach. It also lacks the elegance of the
theoretically integrated approach.

www.manaraa.com

156 The problem with existing systems

10.1.2 Option 2: Use integrated CASE where possible

To maximize the use of CASE the applications may be divided into those
which are required to work with existing applications and those which are
not. This allows those which are not required to be eompatible with
existing systems to be developed using a fully blown integrated CASE
teehnique with the assoeiated advantages of integration and integrity.

However, to run the two approaehes in parallel involves mueh
duplieation, with two methods to leam, two sets of tools to buy and is an
inelegant and expensive solution.

What the IT eommunity has done in this ease is to sell the business
world the eoneept of integration with all its perceived advantages of data
integrity, efficieney and eleganee. However, in any organization where
there are existing systems whieh need to be integrated with new
applieations, the eurrent teehnology cannot deli ver integration in both the
development methods and tools and the final systems (Fig. 10.4)

Where there is a significant existing integrated MIS

Fig. 10.4 The problem with integration.

Although many of the ease studies used in the book pre-date the time
of writing (mid-1993), an informal telephone survey of CASE users
suggests that this is still true.

The technologieally centred solution to this problem is reverse
engineering, whieh seeks to re-engineer the old systems, and therefore

www.manaraa.com

Reverse engineering 157

permit the use of integration in both development and implemented
systems. How far this is possible will be examined next.

10.2 REVERSE ENGINEERING

The term 'software engineering' has been in use for some years now and
there is a consensus that the term refers to a systematic process to move
from a business problem to actual operational code.

However, in recent years the terms 're-engineering' and 'reverse
engineering' have appeared on the scene. Being a much more immature
technology, there is little consensus as to meaning. Some use re­
engineering to describe the process of simply tidying up existing
software. Others use the same term to describe the process of extracting
business logic from existing systems; literally the reverse of software
engineering. Therefore, others describe that second procedure by the term
'reverse engineering'. Unfortunately, others use that term to describe the
complete cyde of business logic extraction foHowed by system
rebuilding.

As weH as the relative immaturity of the technology, there are those
who would argue that there are people with vested interests who would
oppose darification. The process of integrating and maintaining existing
systems within a fuHy blown integrated CASE development environment
is dependent upon the ability to recreate those systems within the format
of the CASE environment.

Reverse engineering is therefore not a luxury but a necessity for the
effective working of such environments. It is perhaps easy to see what we
would like from reverse engineering. Its aim has been stated as:

'To extract the contents, structure, and flow of data and processes
contained within existing system software in a form amenable to inquiry,
analysis and documentation. '

However, much remains to be done to realize the dream (Fig. 10.5) in
its entirety.

The primary purpose of reverse engineering is thus to translate
existing source code, whether in COBOL, PUl 4GL or whatever, into a
form which can be dealt with in the CASE environment, and therefore
recreated in such a way that it can be maintained according to the
evolving needs of the organization.

www.manaraa.com

158 The problem with existing systems

Fig. 10.5 Reverse engineering ... the technologist's dream.

The importance of reverse engineering is that most code in use in
organizations was written before the advent of the current methods and
tools. Unless this code can be brought into the CASE fold, the benefits to
the organization will be small for a long time to come.

At the last count, the United States alone spends $30 thousand
million a year simply supporting old COBOL code. One estimate even
goes so far as to indicate that total US spending on software maintenance
amounts to no less than 2% of the country's total gross national product.

Furthermore, the problem is getting worse. The US Air Force, for
example, recently announced that it costs between $2500 and $3000 to
change just one line of application code. From this figure, it projected
that, unless it could alter in some fundamental way the software
maintenance equation, it would require 45% of the country's 18-25 year
olds to maintain its software by the end of the century. Figures for the UK
are equally grim. Durham University's Centre for Software Maintenance
estimates that the UK spends more than f 1 thousand million each year on
maintaining software.

These figures will not be addressed by CASE for new systems alone;
as systems get older, maintenance costs rise and this is likely to more than
outweigh the reduced costs associated with newer systems developed
underCASE.
There is a point in the evolution of every market where vendors feel the

need to try to overcome customer indifference by the excessive use of
hyperbole. Thus, five years ago early CASE marketeers forecast that their
new tools would 'eliminate programming totally' . Today, a fair number

www.manaraa.com

Reverse engineering 159

of the hyperbole merchants appear to be in the reverse engineering
market. There is much talk about using reverse engineering tools to
'reincamate business logic souls from program cadavers', of the new 'top
downlbottom up' approach to systems development, and even about the
foolhardiness of attempting to build computer systems using the 'top
down' approach to software development.

Reverse engineering is currently suffering from a level of hype
previously reserved for the likes of artificial intelligence. The reality is
somewhat different. At a practical level, no-one is yet able routinely to
offer business logic reincarnation. Further, the methods available are not
nearly as weIl developed as those of software engineering. The field is
younger and the problem more complex.

It is likely, however, that reverse engineering will not go away, simply
because of the commercial necessity to find a solution. Much work is
currently underway and in the longer term it may prove more important
than current ideas on forward systems engineering.

In the meantime we shall consider what the current generation of tools
can do for uso

10.2.1 The current role of tools

Existing reverse engineering tools are designed to extract a limited
amount of helpful information from current systems. Whilst they are not
the promised code transmuters, they can ass ist software developers in the
tasks of:

• documenting existing code

• cross referencing

• understanding how the code is organized.

They can function at the module, pro gram, application, library or
installation level. One of the most important observations is that although
these tools may fall short of the unrealistic expectations set for them, they
can still make a valuable contribution to productivity in maintaining
existing systems.

An analogy may be made here with the field of artificial intelligence.
The attempts to build intelligent machines, promised in the 1950s have
failed in the eyes of most people. However, all over the world, small scale

www.manaraa.com

160 The problem with existing systems

knowledge based systems are making meaningful contributions to their
organizations. These systems are not 'intelligent' in any meaningful way
and they may not produce the spectacular results promised; however, they
are still making a useful and profitable contribution in many areas.

The tools to support these activities are known as software resource
analysis tools. The case for them is that before a programmer can actually
alter program code, they must spend much time working out which code
to alter. Figures from IBM, for example, indicate that upwards of 50% of
software maintenance is concerned with investigation and analysis. In a
sense, what analysis tools offer is a method of building complex cross
reference indices to the software resource.

Although the tools that fall into this category are technologically the
simplest in reverse engineering terms, they are probably the most
attractive to development staff in the short term.

Once this level of activity is working effectively, it is possible to make
use of code restructuring tools to generate new source code. The
commercial benefit of this is easy to see in reduced maintenance costs
associated with well-structured code. This will then leave the
organization weIl placed to take advantage of any further developments
that come along.

Code restructuring tools which support this level of activity simply
take spaghetti (i.e. unstructured) code in, and generate a new program in a
structured form. The underlying business logic remains unaltered. The
restructured program should be easier to maintain. There is, however, a
'down side' to restructuring. The tools are heavy in their use of machine
resources. Source and object code sizes typically increase by between 10
and 20%. Run-time CPU increases can vary between 5 and 10%.

More worrying, perhaps, is the criticism that restructuring tools can
devastate what has become a familiar program structure. Inevitably,
restructuring alters irrevocably what are probably well-known program
'landmarks' . Whilst reasonably successful in the US, code restructuring
has made little impact in Europe.

Just as it is those organizations who already have well-developed
methods in place that benefit most from automation through CASE, so it
is those organizations who have experience of the limited reverse
engineering techniques and tools currently available who will be weH
placed to take advantage of future developments.

Those future developments are highly sought after but little in
evidence. The Bachman tool, for reverse engineering definitions from

www.manaraa.com

Reverse engineering 161

IMS and IDMS into DB2, perhaps the most successful, can currently only
deal with data. Like CASE vendors before it, Bachman has recognized
how much easier it is to deal with the data side of development than with
the process side. However, what is happening on the data side is also
being mirrored on the process side.

A number of organizations have products that abstract business logic
from existing COBOL applications. Following this process of abstraction,
developers are able to manipulate that logic at a 'design level', using it as
the basis of software development and enhancement. Certainly, all the
leading CASE vendors are working on tools designed to achieve exactly
that.

The process of reverse engineering patently needs a target into which
to abstract the essence of existing systems. This can then become a source
from which to generate new systems. A CASE repository can fulfil both
those functions.

A repository for reverse engineering shares many of the properties of
current repositories for forward engineering. The principal requirement is
for flexibility; traditional 'data processing' databases are not flexible
enough to represent meaningfully the subtlety and complexity of the
models needed to support systems development and maintenance.

Current developments are based around object-oriented or entity­
relationship models. There is, however, a gap between the current
achievements and the actual requirements.

10.2.2 Current limitations

The dream of true reverse engineering in the sense of automatic
regeneration of existing spaghetti code systems into nice neatly structured
systems remains a dream, at least for the present.

It is, however, possible to set up a reverse engineering method which
makes use of the current generation of tools. The role of tools in this
process should be viewed as assisting in the process of rebuilding
systems rather than automating the process. Again we may use the
analogy of artificial intelligence.

We would like to have truly automatic reverse engineering tools, just
as we would like to have truly intelligent systems for automating decision
making processes. In practice we have a range of tools which are
analogous to decision support and information processing systems,

www.manaraa.com

162 The problem with existing systems

which, whilst they are not wh at we might ideally want, can make a useful
contribution.

Furthermore, it has been shown in AI that there are both advantages to
human control of the process and disadvantages to full automation.
Human control of the process allows user involvement in the
reconstruction process. It is almost certain that old systems need
adaptation to current business needs.

The process of testing and validation is easier when humans control
the process as weIl. Therefore, a headlong rush to complete automation
may not provide the best business solution anyway.

The current tools do permit an evolutionary approach to the problem
of reverse engineering, from the use of simple tools to document and
record the structure of existing systems through to tools which go some
way towards the dream of automatie system generation.

The evolutionary approach minimizes risk and change, which is
particularly important in a field which is very immature. Although CASE
is a relatively new technology, it has its roots in ideas established and
accepted for twenty years. Compared to this, reverse engineering in all its
forms is practically brand new. As with all new technologies, it is likely
to be characterized by unrealistic expectations, exaggerated claims and
changes of direction for some time to come.

The smart approach is to stay just behind the state of the art, adopting
the underlying principles of the process with the minimum investment in
high risk areas which may turn out to be blind alleys. As with forward
software engineering, it is the principles and methods wh ich should be
established first. These will bring many benefits, particularly when used
in conjunction with basic tools. The more glamorous excursions into
large expensive tools are likely to bring less return at higher risk and it is
hard to see the justification at this stage in business terms.

www.manaraa.com

Reverse engineering 163

Table 10.2 The analogy with AI

Decision making Reverse engineering

Intelligent systems Fully automated system
regeneration tools

___ Decision support systems Code restructuring tools

Information processing and CA SE repositories
storage systems

For the future, the reverse engineering band wagon is rolling and the
commercial imperative is likely to drive it forward. It is already possible
to fore see the emergence of a whole new approach to software
development that takes the best of both top down and reverse engineering
approaches. Future methodologies will emphasize the need to develop
software as business evolves. However, the problem of tidying up current
applications is undoubtedly here for many years to come.

It will be necessary to use the top down approach to establish the
correct information architecture to support future developments and to

www.manaraa.com

164 The problem with existing systems

continue to use business-oriented methods of analysis. However, for the
next decade, there will be a process of abstracting from existing systems
the logic needed to build conceptual models of existing operational
computer systems.

Gradually, the top down and bottom up models will be combined to
produce 'super-models' that reflect day to day business reality. Once the
super-models are in place, software developers will continue to use a
combination of techniques to enhance them in response to business
changes. However, all development or enhancement work will take place
at the design level, not at the code level.

Reverse engineering consists of understanding those parts of an
existing system at the physical design level. It is useful if it is carried out
for those systems or system components which will play a direct part in
the parallel running of a new system. Reverse engineering is a highly
skilled, manpower-intensive exercise to make sense of the amount of
available and accessible information in a real-world system. Some
computer assistance is available to help translate the machine readable
components of the computer portion of systems. These products are code
and data structure reformatters: they do not fundamentally change the
knowledge about a system. Such reformatting is useful and necessary
where it can be used to design new systems coherently. To operate
reverse engineering, possibly partially automated, as part of a top-down
development discipline, in conjunction with other techniques, is a
pragmatic addition to software development.

10.3 CASE sruOy

10.3.1 The company: almost a green field site

The company has a tumover of over flOM and it employs 100 people. It
is part of a larger group with a total tumover of f120M The company
typically produces over 200 orders per day with many of them having a
value of less than f100. It produces bias bindings, trouser waistbands,
hook and eye tape, pocketing, braided, knitted and woven elastics, tapes
and webbing and. It does not hold much finished stock but can, if
required, make and deli ver within 24 hours. Its order book normally
covers about six weeks' production.

When a new managing director arrived in 1981, the company's
practices had changed very little from when the company was set up in

www.manaraa.com

Case study 165

1938. The problem was that the initial processing of the orders, more than
100 per day, was taking too long. The pricing of the orders was very
complicated and time consuming. The price is dependent on the type of
cloth, cloth width, folding, stitching, gluing, packing, etc. Orders were
just not getting onto and off the factory floor quickly enough. Invoices
and statements were not sent out quickly enough and cash flow was a
problem. The solution was to computerize the production of works
orders, invoices and delivery notes, using bespoke software, and buy
off-the-shelf accounts and payroll packages. Extra production machines
were put into the factory so that production could react quickly to
customer requirements. Workers in the factory are able to operate on a
number of different machines.

The clerical procedures were very good but slow and cumbersome and
had allowed the building of 'empires' by individuals who were reluctant
to change. The computer system modelled the clerical procedures and
was put in against resistance from the existing staff. The number of staff
doing the clerical work has been reduced from 10 to 3. Most staff have
been redeployed. The clerical tasks have been de-skilled but staff are now
multi-skilled. The company now processes over 200 orders per day. The
system provides a wide variety of senior management reports which allow
the efficient control of the company.

The computer systems have made the company more profitable. Once
the company had sorted out its internal workings it allowed the directors
time to look at the long term future of the business. The company has
grown by acquiring five companies with turnovers in the f:2M to f:3.5M
range. The computer systems have been installed in some of these
companies. This growth by acquisition has been achieved with an
increase of only one person in the administration section.

In November 1988, a disgruntled employee started a fire which
destroyed the complete factory, stocks, orders, etc. The director had taken
horne back-up copies of the system and data. A program was generated
which listed the outstanding order position and important customer
orders. Critical production was moved to another factory in the group and
the rest of the orders were contracted out to other manufacturers.
Production was re-started within a week. The computer system kept track
of all orders and their location. The company would not have survived
without the back-up program and data copies. As a result of the flfe all
the manual purchase ordering data was lost. The directors considered that
the time was ripe to implement a purchase ordering system. Thus the fire

www.manaraa.com

166 The problem with existing systems

actually provided the almost mythieal green field site that CASE tools are
ideally suited to.

10.3.2 Conclusions

All systems have been developed using software engineering methods
and tools. The use of such techniques, together with the use of effective
backup procedures at a time of crisis, has enabled the business to develop
information systems whieh meet their needs effectively.

This case provides as near a green field site as one is ever likely to
meet. In the first instance, procedures and systems had changed Httle in
fifty years and were largely manual in nature. The fire further reduced the
level of existing systems and thus enabled further systems to be added
according to a dear strategie plan. This has enabled the company to
introduce their new development procedures and resulting computer
systems with minimum fuss and to maximum effect.

However, even such a green field site has an existing information
system and culture. The information system may be paper based and the
culture old-fashioned, but it should not be ignored. In situations where
the existing systems are already computerized, then the issue of back
compatibility is often more complex.

10.4 SUMMARY

In this chapter we have explored the problem of integrating and
maintaining existing systems within an integrated CASE environment.
We have identified the problems and proposed a range of solutions from
those involving changing working practices to those which require the
introduction of more technology.

In this context we have explored the development of reverse
engineering tools and tried to separate the truth from the hype. The key
points of this chapter are:

• CASE can only address escalating maintenance costs by dealing with
the problem of existing systems.

• Existing methods and tools do not easily allow integration of new and
existing systems.

• The technology of reverse engineering is a long way from maturity.

www.manaraa.com

Further reading 167

• Current reverse engineering tools can help in the restructuring of
existing systems.

FURTHER READING

Choi, S.C. and Scacchi, W. (1991) SOFfMAN: environment for forward
and reverse CASE Information and Software Technology, 33(9), 664-
674.

Kozaczynski, W., Liongosari, E.S. and Ning, J.Q. (1991) BAUSRW:
Assembler re-engineering workbench. Information and Software
Technology, 33(9), 675-684.

These papers describe two approaches to the problem of reverse
engineering.

www.manaraa.com

11

Serving the business needs

11.1 THE IT CUL TURE GAP

In the 1960s, the software crisis was identified as the problem of
managing increasing system complexity. In the 1990s, there is a new
crisis arising from the fact that users regard many of the systems provided
for them as inappropriate and failing to meet their needs. The authors
have already suggested that much of the maintenance effort is in fact
spent upon making systems fit user needs hetter rather than correcting
errors in coding.

This is reflected in a lack of confidence in the ability of the IT
community to deli ver the systems that people want. This is precisely the
kind of problem that CASE should be able to address. However, should
CASE fail to deliver, then this will reinforce the current scepticism.

This scepticism is increasing at board and chief executive level
regarding large-scale IT projects in general. Price Waterhouse (1990,
1992) have identified this in a study of director attitudes to IT. They
identify the underlying problem as a 'culture gap' between business
people and the IT professionals. They asked IT directors to identify the
symptoms and effects of this culture gap. The symptoms identified in
order of priority were:

• IT potential not appreciated by top management;

• Business implications of IT not appreciated by IT staff;

• Business people have difficulty integrating IT people into the
organization;

• Business people don't trust IT people;

• Differences between centralization of business and IT not appreciated;

www.manaraa.com

The lT culture gap 169

• Powerful departments pursue 10cal interest at expense of integration;

• Power is separated from responsibility.

The effects identified in the Price Waterhouse studies were:

• Loss of IT opportunities;

• Forcing justification of IT investment by artificial measurement of
intangibles;

• Putting in the wrong, or ill-conceived, systems;

• Adding burden to IT management whilst not harming company
performance;

• Over-concentration on cheap solutions and cost cutting;

• Denying opportunity for brainstorming with top executives;

• Jeopardising future of company by failure to insta11 core systems.

If this culture gap is perceived within an organization then the worst
thing that can be undertaken is a large scale investment in further
technology in the face of board scepticism. In such a situation, the
symptoms are often identified as poor service from the IT function. Their
response can be to throw themselves into ever more sophisticated
technological solutions to address the symptoms. This will merely dig
themselves deeper into the mire.

Instead, a fundamental review of roles and functions is required
before any further large scale IT projects can be undertaken. The correct
order of events in such a scenario is first sort out the management issues,
then the fundamental working practices of the IT section. Then and only
then should those working practices be automated using a CASE too1.

Unless there is sound management and practice already, then adding a
tool will simply add complexity and confusion. There is increasing
evidence (Lehman, 1990) that those organizations who are successfully
implementing CASE tools already have a sound base of working methods
on which to build.

www.manaraa.com

170 Serving the business needs

Poor perception of IT function

Underlying management
problem made more complex

Makes IT function less eftectiv

x
Fig. 11.1 A wrong and a right strategy.

Thus, organizations with the greatest need for CASE methods and
tools may not be best placed to gain the benefits sought by senior
management. By contrast, those organizations with well-managed IT
functions with good existing practice and a good understanding of the
business of their customers, whether internal or external, will draw the
greatest benefits.

The starting point for breaking down any 'culture gap' which may
exist is to establish c1ear aims and objectives for both business and IT and
to ensure that all parties are c1ear how the IT objectives support the
business objectives.

Having established where the business is going and where IT must go
to support it, the next stage is to establish a strategy to get there. In an
ideal world, the IT strategy will be part of an overall business strategy.
However, in many organizations this will be a somewhat Utopian ideal.
Where the IT strategy is separate from the business strategy, each
component of the IT strategy must be measured against the criterion of
what part of the business strategy does it serve?

www.manaraa.com

The IT strategy 171

11.2 THE IT STRATEGY

It is possible to use software engineering effectively yet still have no IT
strategy. So why bother? Without a suitable strategy, the wrong systems
may be produced, albeit efficiently and to a high technical quality. The
benefit to the business of such systems is likely to be limited.

The IT strategy sits between the business strategy and the software
development strategy. The latter is likely to have been produced by the
DP department and will make statements about how it is intended to
develop systems. This may inc1ude details of the hardware environment,
the software environment, methods of working, level of support,
development time scales and so on.

The business strategy is a top-down statement, while the development
strategy tends to be bottom-up. It attempts to tac1de the IT problems
within the organization. The development strategy may solve many of the
operational problems faced by the business, but there is no guarantee that
the software solutions produced will be those best placed to meet the
business needs of the organizations.

The missing link is an IT strategy. The purpose of such a strategy is
threefold: to ensure that the systems developed are the ones required, to
ensure that the systems meet real business needs and finally to set
priorities. Priorities are required to prevent reaction to crisis, reaction to
who 'shouts the loudest' and reaction to who has the most 'musc1e' in the
organization.

The IT strategy is a plan of what the organization wants to achieve
with its IT systems and how it is going to achieve it. The business
objectives and needs are of prime importance when formulating the
strategy. It is the responsibility of top management and not the
responsibility of computer specialists, although management will need
help and guidance from senior computer professionals whilst formulating
the strategy.

An IT strategy should anticipate future developments in the business,
such as changing business needs, the ability to finance software
developments and new methods of working. In addition, it should foster
an appreciation of good practice, consider the implications of other
management issues and determine how IT can give the organization a
competitive edge.

To complement the top-down approach, there needs to be bottom up
planning. This area, in particular, is where there can be a valuable input
from the senior computer professionals in the organization. The

www.manaraa.com

172 Serving the business needs

bottom-up approach should consider the ways in which new technology
can create opportunities, the strengths and wealmesses in current systems,
future threats from competition, technical constraints and statutory
changes.

At a detailed level, the IT strategy should define a framework for
software development. This consists of the four stages described below.

11.2.1 The life-cycle model

The IT strategy should define the phases of the life-cyde to be used by
the organization. The baselines, objectives and outputs of each phase
should be dearly stated. It is necessary to define the interfaces between
phases to ensure that there are no overlaps or omissions between them.
The validation and verification procedures and the quality control
procedures must also be dearly defined at this stage.

11.2.2 Standards and procedures

The standards and procedures to be used by the organization need to be
specified. These should indude a statement on the content and quality of
all internal and user documentation. The quality assurance procedures
need to be specified together with the quality management system. The
procedures for project management and control should also be detailed.

11.2.3 Methods

When the life cyde model, standards and procedures, quality control,
quality assurance and project management procedures have been
specified, it is then possible to select the method(s) to be used. It is
important that methods are selected after the procedures are put in place,
not before.

11.2.4 Tools

Software tools can be used to support development methods and other
software engineering activities. Tools help to automate the software
development processes, but they are ineffective without the underlying
standards, procedures and methods. They should only be selected after
the earlier phases of the framework are in place.

www.manaraa.com

CASE and the IT strategy 173

Once the IT strategy has been completed, it should be thoroughly
documented. It should be updated each year to identify existing and
unforeseen IT requirements, to specify how these are to be met and to
specify procedures to establish priorities amongst these projects.

11.3 CASE AND THE IT STRATEGY

The link between the CASE methods and tools adopted and the IT
strategy will depend upon the mode of implementation. Where the full
integrated CASE approach is used then the IT strategy is the result of the
fIrst stage of the integrated life cycle.

ORACLE (Barker, 1990), in their integrated method, describe the
resulting strategy as a complete but not detailed analysis from which a
broad based business model can be built. They suggest that the key
deliverables which make up the strategy are:

• statement of business direction

• top level entity relationship model

• function hierarchy

• recommendations

• organizational, technological or other issues

• defInition of the system boundary

• possible system architecture

• phased development plan

• resource statement.

This somewhat daunting list of deliverables is to be buHt up by
interviewing the key executives in the organization. The model is then
built and refIned in consultation with the same people. The process
proposed is illustrated in Fig. 11.2.

www.manaraa.com

174 Serving the business needs

Scope

Fig. 11.2 The ORACLE approach to deriving an information strategy.

This approach has been used by ORACLE themselves with their
clients. However, as a more general approach, it does have a number of
disadvantages. The principal dis advantage is its complexity.

The conventional solution to this problem is to use consultants to
assist in the process of drawing up the IT strategy. This suffers from two
problems:

• The first problem is cost. Consultants are expensive, and an IT
strategy can take many consultant-days.

• The second problem is the problem of external people playing a major
part in deriving the strategy. They cannot have the same in-depth
knowledge of the business as an internal manager and the resulting
strategy may not be adopted enthusiastically if it is perceived as the
invention of outsiders. For the consultants to playagenuine enabling
role, giving the company managers the knowledge to draw up their

www.manaraa.com

CASE and the IT strategy 175

own strategy, will be even more expensive than if the consultants do
much of the work themselves.

It is therefore suggested that the process of deriving an IT strategy
should be a simpler one. The following process is suggested:

Establish business objectives

Establish business functions

Set IT objectives

Establish IT functionality

Establish which systems required

Specify new systems required

Fig 11.3 Simplified generic route to an IT strategy.

This approach may be considered in six stages. The first is the
establishment of business objectives. These should already be in
existence, in the business strategy document or business plan. From these
objectives, it is necessary to derive the required business functionality
necessary to achieve these objectives.

Each of these business functions may then be supported (or hindered)
by IT provision. First it is necessary to establish IT objectives in terms of
which business functions may best be supported and how. Once the IT
objectives are established, then the necessary functionality may be
defined for the systems needed to meet the objectives set.

Finally, each system must be specified in terms of a preliminary
specification, inc1uding scope, size, estimated cost and time for
development, to provide enough information so that a business case may
be made for each proposed system to ensure that its benefits outweigh its
cost.

www.manaraa.com

176 Serving the business needs

This approach does not differ radically from proprietary approaches,
but does offer a number of significant simplifications to the uninitiated.

First, the strategy should be drawn up by a small working group who
represent both business and IT functions and different levels of the
management hierarchy. This is essential if the strategy is to be accepted
and 'owned' by all parties. The group's size should be about half a
dozen: smaller and it runs the risk of not representing all interests; too big
and it becomes a committee.

Secondly, the outputs should avoid the use of specialized
diagramming techniques. At the level of detail required, they offer little
benefit and serve only to confuse the uninitiated. Simple tree diagrams
should suffice to display the information required in the strategy output
documents.

Outllne

System
Spec

Fig 11.4 Output representation ofIT strategy.

Business objectives

Business functions

IT objective

IT function

ITsystem

The crucial level of detail which must not be omitted is the links
between each part of the process. Thus it should be c1early established
which business function follows from which objective, which IT
objective supports that business function, which IT function supports
which IT objective, and which systems are required to deliver that IT
function.

In this way, it is possible to establish an 'audit trail' through the
strategy so that the need for each system is traceable back to a specific
business objective and function. This then allows informed decisions to
be made as to the business case for a particular system.

www.manaraa.com

Providing a better service 177

11.4 PROVIDING A BETTER SERVICE

The impact of CASE tools and methods upon the quality of information
systems is generally assessed in terms of technical criteria for the quality.
Most of these may be traced back to a c1assical model of McCall (1977)
established in the late 1970s. His criteria were: correctness, reliability,
efficiency, integrity, usability, maintainability, flexibility, testability ,
portability, re-usability and interoperability. There are a number of
problems with these criteria in a business context.

First, they are a necessary but not complete set. This means that it is
probably necessary for a system to meet all McCall' s criteria to be a
successful business application, but it is perfect1y possible to meet these
criteria and provide a system which is unacceptable to the people who are
to use it.

Secondly, although they highlight areas where problems may arise,
they do not identify where in the software process those problems are
caused.

Finally, they focus upon the quality of systems, rather than the quality
of the service provided by the IT function. Where IT is an internal
function, it is a supplier of a support service in the eye of the rest of the
business, rather than a product vendor. Even where the customer is
external, and software is sold as a product, the business case for spending
the money will be made in terms of the effect that the software has upon
the overall effectiveness of the business. The software supplier is still
providing a service to the business in the same way and the ultimate test
of the software remains, how does it impact upon the business as a
whole.

In a regional survey of large companies in the north west of England
(Gillies, 1993) the companies identified symptoms similar to those
described in the Price Waterhouse studies (1990,1992). A consistent
theme was that the IT function and the systems provided did not meet the
needs of users. When this was examined further, the companies
highlighted aseries of problems which are not simply about the technical
quality of systems but rather relate to the quality of the service provided
by the IT function.

The problems raised by business users inc1uded:

• A lack of support from the IT function.

• User dissatisfaction with the system once working.

www.manaraa.com

178 Serving the business needs

• Difficulties in transition from an old system to a new one.

• Failure to deliver in order to meet business deadlines.

• Failure to consult users.

• Inaccurate results.

• Failure to appreciate the time required to complete a task in use.

• Systems that people didn't actually like.

• Inflexible systems.

• Failure to meet the cost/benefit objectives.

• Systems unsympathetic to human ways of working (Fig. 11.5).

Fig. 11.5 Users find systems unsympathetic to their way of working.

To consider the impact of CASE upon these problems we must first
consider the likely underlying factors which are the cause of the
symptoms described. These are considered in Table 11.1.

www.manaraa.com

Providing a better service 179

Table 11.1 Reported and underlying problems

Reported problem Possible underlying problems

A lack of support from IT staff • Poor relationship between IT and business staff

User dissatisfaction with the • Poor communication during analysis
system once working

Difficulties in transition from
an old system to a new one

Failure to deli ver in order to
meet business deadlines

Failure to consult users

Inaccurate results

Failure to appreciate the time
needed to complete a task in
use

Systems that people didn't like

Inflexible systems

Failure to meet the costlbenefit
objectives

Systems unsympathetic to
human ways of working

• Poor implementation leading to unreliability,
inefficiency

• Lack of planning and strategy

• Failure to appreciate users' problems

• Inflexible tool prevents integration

• Poor productivity

• Poor estimation

• Failure to appreciate customer needs

• Poor relationship between IT and business staff

• Poor design

• Poor testing

• Poor integrity

• Poor analysis

• Poor communication

• Poor relationship between IT and business staff

• Poor design leading to unstructured code with
low maintainability

• Poor analysis leading to low benefit

• Poor productivity leading to high cost

• Poor analysis

• Poor relations hip between IT and business staff

www.manaraa.com

180 Serving the business needs

The table shows that the underlying problems may be classified as
problems with development methods and cultural problems in the
organization. Generally, the use of CASE methods will have a positive
impact in the area of problems arising from poor development methods.
Therefore they could be expected to address the issues arising from them.

For example, the cost and difficulty of development and maintenance
is at the root of problems in timeliness of delivery and flexibility in the
face of changing business needs. CASE methods and tools should also
reduce the problem of inaccurate results by assisting in the detection and
correction of errors. Systems based upon structured methods are more
maintainable and adaptable and should therefore prove more flexible in
the face of changing business needs.

Finally, better analysis and design methods should improve estimation
of costs and the reliability of such estimates by providing a more
consistent environment for system development. Better analysis may help
with the clarity of the system objectives, and therefore lead to a better
appreciation of the benefits or perhaps lack of them.

These factors taken together should improve the probability of a
system meeting its costlbenefit objectives.

However, a number of caveats must be sounded. The first is that none
of these benefits will come immediately and indeed performance in some
of these areas is likely to suffer in the short term. It is therefore essential
that customers of the IT department understand the implications and
motivation for adopting CASE methods and tools.

Secondly, we have already seen that the impact of CASE methods and
tools is not necessarily universally beneficial even when considering
solely the development process and its associated problems. The impact
of CASE tools may be considered for McCall' s criteria.

Table 11.2 considers the impact of CASE upon each criterion at three
stages of implementation: initially, then at steady state and finally in the
best possible case where the CASE technology deli vers all that is
promised. The impact is expressed in terms of the following classification
system:

./ ./ Strongly beneficial

./ Beneficial
o Neutral or application dependent
x Detrimental
xx Strongly detrimental

www.manaraa.com

Providing a better service 181

Table 11.2 The effect of CASE upon McCall' s criteria

Criteria Impact Comments

Initial Steady Best

Correctness ./ ././ ././ Some benefit initially.

Greater benefit with experience .

Reliability 0 ././ ././ At start, some gains but some losses
with errors arising from inexperience.

As experience grows, so gains retained
but losses reduced.

Efficiency xx xx x Structured code is always less efficient.

Generated code appears worse .

Integrity 0 ././ ././ Comments as for reliability.

Usability 0 ./ ./ Benefits arise from use of rapid
prototyping tools .

Maintainability ./ ././ ././ Structured methods will produce
benefits; more with experience .

Flexibility 0 ././ Compatibility problems with existing
systems reduce benefit at start.

Structured methods will produce
benefits; more with experience .

Testability ./ ././ ././ Comments as for maintainability

Portability xx xx 0 Fully integrated CASE tools reduce
extemal compatibility unless whole
establishment is CASE built.

Re-usability xx xx 0 Fully integrated CASE tools reduce re-
usability unless whole establishment is
CASE built.

Interoperability xx xx 0 Comments as for portability.

www.manaraa.com

182 Serving the business needs

The other factor associated with the development process itself is
productivity. We have already seen how productivity will at first decrease
and then improve with experience. This should have a positive impact in
the medium to long term upon the issues of the failure to deliver to meet
business deadlines and high costs arising from poor productivity.

Thus the ability of CASE to impact upon the issues highlighted by
users is much stronger in the medium to long term than it is in the short
term.

Further, it must be recognized that CASE tools and methods cannot in
themselves change attitudes and cultures. Therefore, CASE alone is likely
to affect only slightly those factors arising from cultural and
organizational issues.

There are procedures published for the breaking down of the culture
gap, e.g. LOQUM (Gillies,1993) but such techniques are not generally
part of the CASE approach. However, used sensitively and effectively,
CASE methods and tools can facilitate user-developer communication,
particularly with rapid prototyping tools to demonstrate 'look and feel' to
users.

To provide a solution for these issues it is necessary to see CASE as
part of a broader process of improvement which will be discussed in the
next chapter. In the longer term, customers will judge the effectiveness of
the new methods and tools by the quality of the service and systems that
the IT function provides, and it is simply not enough to focus solely upon
the development process.

11.5 CASE STUDY

11.5.1 The company

The companY is part of a group of companies operating throughout the
UK and Western Europe, providing a range of marketing services which
include tele-marketing, direct mail, campaign design, training and
consultancy. The company was formed in 1984 with the aim of building a
database of the major computer sites in the UK and using this to provide
marketing support to the IT industry. The expertise acquired in building
this database is now being transferred, through consultancy, to their
clients, many of whom are building their own databases and the turnover
of the company has reached approximately f:2M.

www.manaraa.com

Case study 183

As far as computers are concemed, networked Datapoint micros were
replaced by an IBM Systeml38 in 1986 and Apple Macintoshes are also
widely used as personal workstations. Generally the attitude of
management is to understand the benefits of IT but to be sceptical about
the possibility of these benefits being realized in practice. IT 'experts' are
seen as generally unreliable, often giving conflicting advice and rarely
being willing to be held accountable for their recommendations. They are
perceived as being too willing to blame circumstances and find reasons
for things not working out as planned.

11.5.2 The information business environment

The company is in the business of marketing and there are many apparent
paralieis between marketing and IT. Both are essentially simple to
understand and benefit from, and yet both tend to be misunderstood,
misused and blamed for failures, to the detriment of the organizations of
whieh they are apart. Above all else success in marketing depends upon
teamwork. It requires a fusion of the communication skills of telephone
marketeers to collect up-to-date and accurate information, the technical
skills of DP to provide the systems which can hold and process this
information, the academic skills of statistieians to describe markets with
mathematical models and the talents of copywriters and graphie designers
to create the marketing message.

The raw material of marketing is information. The idea of information
as a resource is relative1y new and generaIly not weIl understood. It
would be a very radieal organization that tomorrow moming instructs its
sales force that their primary objective is no longer to dose sales but is,
instead, to collect information, and that from now on commission will be
paid according to the amount and quality of information they collect, and
yet ideas like this are already being discussed quite seriously. Therefore,
in data processing, we are dealing with people who understand the
commercial value of information very weIl, and who look to us to provide
the tools to process it.

11.5.3 The project

At the beginning of 1987, the company had a problem. They had a
maintenance backlog as the result of new methods of research and new
areas of interest that had to be incorporated into their computer systems.

www.manaraa.com

184 Serving the business needs

They were faced with a growing DP department and a growing DP
bill. Their clients were facing longer and longer lead times before
changing needs could be met. Product was being delivered late. At the
same time, the company were being successful, demand for their products
was growing and management wanted to expand the company,
particularly into new European markets. DP was becoming the major
limiting factor to growth. What the DP function wanted to do was
redesign the database, but this meant re-writing most of the applications
software, which was estimated to be a twelve-month project.

The project objectives were stated as follows:

• to redesign the database;

• to rewrite the applications software;

• to allow for future changes in the database;

• to increase user involvement in the system;

• to allow for interfaces with other systems.

Technically this was feasible, but the problem was how to achieve the
objectives within the available time. The system was to include four
components, providing database definition, on-line update, report
generation, pe and remote (Kilostream) links. A 4th generation language,
Genesis V, was chosen as the major software tool in the development
programme.

Within the old database, the primary unit of interest was some basic
information about a company (name, address, etc.) which was held in a
'root' module. Linked to this would be a name file holding the details of
people working for the company and various product files containing
details of products used by the company, e.g. computers, company cars,
etc. This information was arranged in a hierarchical structure. Adding a
new product type or a new field to an existing product type involved
changing the database, application pro grams and reports.

By contrast, the new database is based upon the relational model, with
the root information and names held as separate tables. All product
information is held in one table which contains a question code and an
answer code (the answer text field allows for which may not be coded).
Adding a new product type or a new field to an existing product type now

www.manaraa.com

Case study 185

involves no more than updating the question code table and the answer
code table. This task may be carried out easily by the end user.

Ouring the design stage, the company were also leaming to use the
tool and worked very closely with the supplier in an attempt to speed this
process up. The system went live on the 1st January 1988. There was an
increased (and unexpected) effort expended immediately after
implementation. This was not due to any failure of the system but rather a
result of aseries of user initiated enhancements that taught the system
developers a lot about design. The tool coped weH with these changes.

11.5.4 Conclusions

The project was considered a success for a number of reasons. First, the
reduced development time for the project enabled the company to meet
the required deadlines for the development of the European products. In
addition, the maintenance 'problem' was dramatically reduced. The end
users took over responsibility for the systems and have been doing their
own enhancements for a number of years. The system administrator is
available for technical problems but now spends part of his time working
for the clients and, incidentaHy, eaming consultancy revenue for the
company.

Perhaps the best indicator of success is, however, a strong feeling
amongst the staff at the company that there is 'no going back' to the old
methods.

11.6 SUMMARY

In this chapter we have considered the evidence for a culture gap between
the IT function and the other business functions within an organization.
We have considered the implications for CASE: the reluctance to invest,
the need to meet business objectives as weH as IT objectives, the need for
a dear strategy providing a coherent IT function serving business needs.

Having considered the relationship between IT and the rest of the
business at a strategic level we have then gone on to consider the
implications for CASE at the operationallevel. We have stressed the need
to see IT as a service and not a set of products. We have considered user
concems about their systems and considered how CASE can help address
these concems.

www.manaraa.com

186 Serving the business needs

The key lessons from this chapter are:

• Information technology is a service function.

• There is much evidence for a culture gap between IT and business
staff.

• Many issues are a product of the organizational culture rather than the
development methods.

These issues cannot be addressed by CASE alone, but only as part of a
coherent improvement programme. This topic will be considered in the
next chapter.

FURTHER READING

Barker, R. (1990) CASE Method: Tasks and Deliverables, Addison­
Wesley, Wokingham.

This book is the definitive guide to the ORACLE CASE method and
includes information about their approach to deriving an IT strategy.

Price Waterhouse (1992) Information Technology Review 1991/92,
Publications Office, Price Waterhouse, 32 Bridge Street, London, SEI
9SY, p. 7.

This report provides more information about the survey of IT directors
from the 500 top UK companies, in which the IT 'culture gap' was
identified

Gillies, A.C. (1992), Modelling software quality in the commercial
environment. Software Quality Journal, 1 (3), 175-191

This paper describes the method and findings of the authors' regional
study of quality practice in the north west of England. They identify
many of the issues raised in this chapter.

www.manaraa.com

12

CA SE is just part of the process

12.1 CASE AND THE PROCESS OF PRODUCING SOFTWARE

The last chapter has shown how the ultimate purpose of information
systems is to support the business objectives of an organization. If this
purpose is to be realized then the process of producing software goes far
beyond ensuring that the software is technically correct. It involves:

• recognition that IT has a service function;

• c1arification of the overall process from business need to business
solution;

• acceptance that software engineering is at the heart of the IT supply
process, but dependent upon the processes which surround it (Fig.
12.1);

Fig. 12.1 Software engineering is at the heart of the IT supply process.

www.manaraa.com

188 CASE is just part of the process

• recognition that the overall process is as strong as its weakest link;

• a commitment to continuous improvement of all processes.

The practical realization of this may be seen in the application of
continuous improvement techniques, often referred to as Total Quality
Management (TQM). These techniques generally lead to the
establishment of a quality system. In the software context, one would
expect a software engineering method to be at the heart of such a system,
and it is a requirement of the ISO standard for such systems that a
recognized systematic development method be employed.

In this chapter, we shall consider the use of these techniques and the
impact of standards in the area of software development.

12.2 THE USE OF CONTINUOUS IMPROVEMENT TECHNIQUES
IN SOFTWARE

Much has been written on the Japanese industrial mirac1e and how it is
dependent upon the use of techniques to build quality into a process,
rather than depend upon inspection at the end of the process. TQM
techniques have been applied in many disciplines, weIl beyond the
original application in manufacturing. Readers wishing to leam more are
referred to the works of the gurus in the field, e.g. Deming (1986), Juran
(1979) and Crosby (1986). Alternatively, more ec1ectic treatments are
provided by Oakland (1989) and Gillies (1992b).

There is a backlash currently being witnessed in some quarters. TQM
is currently very fashionable and this inevitably leads to a scepticism
amongst those who have seen other fashions come and go. Many artic1es
on the subject reinforce the view that the 'gurus' are treated with
uncritical respect and this further undermines confidence in the sound
underlying principles. In the context of software development, the basic
principles may be established as:

• define the process

• document the process

• improve the process.

www.manaraa.com

The use 0/ continuous improvement techniques in software 189

Document. ..

Improve

Fig. 12.2 Continuous improvement cycle.

This may be seen to have much in common with the application of
software engineering methods and tools, which provide a systematic
approach to software development. The application of ideas from quality
management may be viewed as an extension of software engineering,
expanding the scope in two critical ways:

• All related activity is deemed to be part of the process, including
planning, estimation, project management and many other activities
which are not generally included under the heading of 'software
engineering', but affect the fitness of the IT function to perform its
role in supporting business objectives.

• The systematic process is evolutionary: it should be constantly
monitored, evaluated and improved.

The overall process is documented as a quality management system
(QMS). The International Standards Organization (ISO, 1986) defines a
quality management system as:

www.manaraa.com

190 CASE isjust part ofthe process

'The organizational structure, responsibilities, procedures, processes and
resources for implementing quality management.'

The key to a successful implementation is a QMS that is a living
system rather than a document gathering dust on a shelf. This may be
achieved through the three stages illustrated in Fig. 12.2.

12.2.1 Define a systematic process

The definition of the process may be seen as an extension of the
application of a software engineering method. Thus this view of the
process includes all related activities: communication between users and
developers, aIl aspects of project estimation, planning and management,
as weIl as the underlying method to be applied to the engineering process
itself.

It is often harder to achieve than the application of a software
engineering method since it requires the imposition of structure and
system on relatively unstructured tasks. The scope of a typical quality
management system for software development will include, but not
necessarily be restricted to, those described in Table 12.1.

12.2.2 Document the process

The manner of documentation of the process is crucial to the successful
imp1ementation of the overall improvement programme. The principal
qualities of an effective document are clarity and usefulness. Most people
stress thoroughness, but documents should only be as thorough as is
useful and necessary. Documents that are too thorough will simply not be
used as they will be too unwieldy. Obviously, however, there is a need for
a sufficient level of detail.

The procedures described must be systematic in themselves and
arranged in a systematic framework. Diagrams are nearly always
preferable to words as they can communicate more information in a
shorter time.

www.manaraa.com

The use 0/ continuous improvement techniques in software 191

Table 12.1 Scope of a typical QMS for software development (after Taylor,1989)

Requirement
Procedures

Review of operational
requirements

Design and development
planning

Organization

Training

Quality program

Management visibility
and control

Design and development
reviews

Explanation

An operational requirements specitication is prepared.
This will cover size, scope, multi-functionality,
operational functions, implementation details, modularity
and the tools, techniques and methods.

A phased project management plan is prepared to cover
the work and resources required. A quality control plan
will also be developed. Plans will be drawn up for the
acquisition of all resources, together with methods to
identify, record and correct non-conformances.

The management structure for the project will be
identitied and recorded. Responsibility will be clearly
identified for all aspects of quality control and quality
assurance. A representative will be appointed to resolve
quality matters to the satisfaction of the customer.

Training will be provided for all new personnel working
on the project in the matters of software development and
quality assurance techniques. It will be ensured that all
personnel have the required academic expertise and level
of knowledge to fulfil their role.

A quality program will be prepared and documented. The
program document will include graphical descriptions of
the work to be carried out, testing plans, documentation
of the occurrences of non-conformance together with
corrective action and definitions of the points at which
each component can undergo formal qualification testing.

Methods and tools will be employed which positively
encourage quality, particularly a formal ISD development
methodology.

Reviews will be planned at the end of each development
phase. The review should be carried out by independent
staff, and open to scrutiny by the customer or an external
body. Review documentation will include objectives,
personnel functions, scope, provision for analysis and
recommendations and procedures for verification of
corrective actions.

www.manaraa.com

192 CASE is just part of the process

Table 12.1 cont'd

Documentation

Support tools,
techniques and methods

Nonconformity,
prevention and
corrective action

Configuration control

Subcontractor control

Documentation shall include the OR specification,
planning and design documentation, the coded program
and QA documentation

The tools and methods used should be identified,
documented and validated.

Non-conformities should be eliminated as far as possible
through the use of reviews and where necessary re­
reviews at each stage.

Procedures should be drawn up to identify modules or
programs, keep master versions secure, provide validated
copies, obtain approval for modifications, ensure
modifications are integrated, software media is properly
marked, handled, and that non-conforming software is
kept rigorously separated.

Procedures should be set up to ensure the quality of all
subcontractor procedures, tools, methods and products
and to delineate responsibility for the above.

Customer supplied items Procedures should be set up to ensure the acceptance,
control storage and maintenance of all items supplied by the

customer.

Change control
management

Testing and formal
qualification

Procedures for the control of change should be prepared,
established, implemented and maintained.

Testability of the requirements should be established.

Reviews of criteria, test procedures and documentation
should be established. Any tools or data used in testing
must be identified and verified.

Preparation for software Procedures must be established for the delivery of the
delivery software, and conformance to the original requirements

established.

Software embedding
and hardware
integration

Access, accommodation
and assistance

Compatibility of software and hardware must be
established.

Facilities should be provided to allow the customer to
check that all requirements have been discharged.

www.manaraa.com

The use 0/ continuous improvement techniques in software 193

12.2.3 Improve the process

Many quality management systems get no further than the documentation
stage. They do not change the practices and attitudes in place in the
organization. For the process of continuous improvement to become part
of the culture of the organization a number of factors are crucial:

• senior management must support and implement the process
themselves;

• people have to want to change; therefore

• people have to see the need and the benefits.

The factors are those associated with any change in working practice
and are the same whether we are introducing tools and methods or
changing the whole process of the IT function. Staff acceptance is
therefore vital (Fig. 12.3). This will not happen by itself.

Fig. 12.3 'Staff acceptance is therefore vital.'

The management of change is critical to the success of the process.
The danger is that the introduction of a QMS by management will be seen
as the imposition of new working practices (Fig. 12.4). The system can
only work if staff perceive the benefits to themselves.

www.manaraa.com

194 CASE is just part of the process

Fig. 12.4 The QMS may be perceived as an imposition.

These include the potential for:

• greater job satisfaction;

• less time spent on pointless activity;

• greater pride in work;

• more group participation; and

• more staff input into the way they do their job.

It is particularly important that communication is a two way process.
For staff to be motivated, they must feel 'involved' and that their
contribution and ideas will make a difference.

This is even more important when introducing a quality management
programme than when introducing software engineering methods and
tools, since the programme should involve a greater number of people in

www.manaraa.com

The use of continuous improvement techniques in software 195

a variety of roles and departments. It is not sufficient for the IT function
to want to change; they must convince the whole organization.

A tension exists in any organization where a quality culture is being
established. The tension exists between a force acting from the top down
and a force coming up from the bottom. The top down force is the 'desire
to manage'. Management is absolutely necessary. It is not possible to
achieve quality by committee. Without fIrm management, there will be no
policy, no strategy, no consistency in decision making, and chaos will
ensue.

However, there is a c1ear need to feed ideas up the organization. A
quality culture will increase the flow of ideas from the work force. Strong
management can verge on autocracy. What one person might regard as a
weIl-organized stable environment may in fact be stagnant rather than
stable. People with ideas which conflict with those of management can be
seen as trouble makers. A perception that the last person to have an idea
was sacked for it will not encourage others to come forward. There are no
c1ear rules on this. Ask a weIl-regarded manager the principles he uses
and he may weIl quote a set of ideas and statements. Ask how he does his
job and he will probably use phrases such as 'by experience' or 'one
instinctively knows'. Intuition ultimately plays a large part in managing
people. This is unhelpful when trying to identify best practice. It is even
less helpful when a badly regarded manager says the same thing!

A balance between structure, direction and policy on the one hand and
innovation, lateral thinking and creativity on the other is required. Views
of quality which emphasize conformance in components can too easily
lead to an emphasis on conformance when dealing with staff. There is a
time for doing things 'by the book' and a time for not. One of the best
defInitions of an expert is someone who knows when the rule book can
be safely discounted.

The question to be considered in the context of CASE is whether it is
better to introduce new methods and tools as part of an ongoing
programme of continuous improvement in the whole process or whether
it is better to establish each separately.

The risk in adopting an integrated approach is that the degree of
change will simply be too high to be acceptable and effective. The
alternative piecemeal approach runs the risk of benefIts being unrealized
due to problems elsewhere in the process.

Practical experience suggests that the introduction of a QMS has
much in common with the introduction of a software engineering method.

www.manaraa.com

196 CASE is just part of the process

Conceptually, this would appear to be the case as weIl. It is therefore
suggested that these should be implemented as a single stage. Other
activities such as automation of the method using a CASE tool or
certification of the QMS to an external standard should be treated
separately. This route offers the quiekest return for the lowest risk. The
second case study in this chapter describes how one company
implemented SSADM and a quality management system leading to
IS09000 certification, but opted not to introduce a CASE tool as weIl.

12.3 THE ROLE OF STANDARDS: IS09000 AND TICKlT

The same concerns which have led to increased adoption of structured
methods and the adoption of CASE tools have led the UK Govemment to
encourage software developers to establish quality management systems
and have them certificated to the IS09000lEN29000IBS5750 quality
management standard (ISO, 1987). The standard establishes the model to
be employed and then the accreditation body, e.g. BSI QA in the UK for
the ISO 9000 series, is called in to ensure that the implementation meets
the required standard and indeed continues to meet the required standard
over time. In practice, three levels of accreditation are encountered, as
summarized in Table 12.2:

Table 12.2 Types of accreditation.

Accreditation type Description

First party Interna! monitoring only

Second party Externa! monitoring by a customer

Third party Externa! monitoring by an independent standards body

It is obviously more effective to have the quality management system
accredited externally. The advantage of third party accreditation over
second party accreditation is that the supplier only has to satisfy one
accreditor. Clearly, to have to justify one's quality practices to six
different customers is undesirable, in terms of cost and time expended. In
the past, certain key customers have assumed almost third party status.
For example, the defence industries in many countries, e.g. the UK MOD

www.manaraa.com

The role of standards: IS09000 and TickIT 197

and the US DoD, are such key customers of software houses that their
second party accreditation is accepted by many as a de facto standard.
However, the IS09000 series is now predominant and increasingly is
replacing second party standards.

The series dates from 1979, when BS5750 was introduced in the UK.
In 1987, the corresponding ISO, BS and EN standards were harmonized
to produce three identical series of standards. In this text, we shall use the
ISO numbers for consistency. The corresponding European and British
standards are given in Table 12.3, which also lists the function of each
standard.

Table 12.3 The IS09000 series of quality management standards

ISO EN BS Description

IS09000 EN29000 BS5750ptO A guide to selecting the appropriate
standard for a quality management
system.

IS09001 EN29001 BS5750 pt! The specification of a QMS for
design, development, production,
installation and service.

IS09002 EN29002 BS5750pt2 The specification of a QMS for
production and installation.

IS09003 EN29003 BS5750 pt3 The specification of a QMS for
final inspection and testing.

IS09004 EN29004 BS5750 pt4 Guidance in setting up a QMS to
meet the IS0900l/2/3 standards.

One of the biggest barriers to acceptance of IS0900 1 amongst IT
practitioners is its generic nature and its origins as a manufacturing
standard. Although IS0900 1 has been applied in many service and
tertiary businesses, many IT people still feel it is inappropriate and
difficult to apply. The response to this from the standards bodies is to
issue 'notes for guidance' on the application of IS09001 to software
development.

It should be stressed that these do not supersede the standard, but
rather amplify its contents with the aim of explaining how the standard
should be applied in a software context. These notes, published in 1991,

www.manaraa.com

198 CASE is just part oj the process

are known as IS09000-3 (ISO, 1991). IS09000-3 headings are summ ar­
ized in Tables 12.4 to 12.6 which give all the principal section headings
and lists the corresponding clauses in IS0900 1, classifying the degree of
guidance provided as none, minor, significant or major.

IS09000-3 has a target audience of the IT community. It is intended
as a complete document in its own right, and its structure therefore differs
from IS09001. The structure oflS09000-3 is as follows:

• Sections 1 to 3: Introductory material. The first three clauses of the
standard are concerned with defining the scope of the standard,
references to other standards and definition of seven terms as used in
IS09000-3.

• Section 4: Quality system - framework. This part contains four
subsections: management responsibility, quality system, internal
quality audit and corrective action.

• Section 5: Quality system - life cyc1e activities. This section contains
ni ne sections, dealing with activities related to one or more parts of
the life cycle. Many of the corresponding sections in IS0900 1 seem
insubstantial in comparison when applied to software.

• Section 6: Quality system - supporting activities. This section contains
nine items which cover the remaining activities. Some, such as
configuration management are mentioned only briefly in IS09001.

Table 12.4 The IS09000-3, Seetion 4: Quality framework

Sub- Sub-section titte IS09001 Addition to
section clauses IS09001

4.1 Management responsibility 4.1 Significant

4.2 Quality system 4.2 Significant

4.3 Internal quality audits 4.17 Minor

4.4 Corrective action 4.14 Minor

www.manaraa.com

The role 01 standards: IS09000 and TickIT 199

Table 12.5 The IS09000-3, Section 5: life cycle activities

Sub- Sub-section title IS09001 Addition to
section clauses lS09001

5.1 Contract reviews 4.3 Significant

5.2 Purchaser' s requirements specification 4.3a,4.4 Significant

5.3 Development planning 4.2 Significant

5.4 Quality planning 4.2 Significant

5.5 Design and implementation 4.4, 4.9 Significant

5.6 Testing and validation 4.10,4.13 Significant

5.7 Acceptance 4.10,4.13 Significant

5.8 Replication, delivery and installation 4.15 Significant

5.9 Maintenance 4.19 Major

Table 12.6 The IS09000-3, Seetion 6: Quality system

Sub- Sub-section title IS09001 clauses Addition to
section IS09001

6.1 Configuration management 4.4,4.5,4.8 Major

6.2 Document control 4.5 Significant

6.3 Quality records 4.16 None

6.4 Measurements 4.20 Major

6.5 Rules, practices and conventions 4.9, 4.11 Significant

6.6 Tools and techniques 4.9,4.11 Significant

6.7 Purchasing 4.6 Minor

6.8 IncIuded software product 4.7 Significant

6.9 Training 4.18 Minor

www.manaraa.com

200 CASE is just part of the process

The key areas of guidance provided by IS09000-3 are requirements
definition, life cycle definition, configuration management and
measurements. Software is considered to be different from other
applications because:

• it is considered as an intellectual object;

• the development process has its own characteristics and importance;

• replication always gives an exact copy;

• software does not deteriorate,

• once a fault is fixed it will not re-occur.

However, in spite of these differences, it is stressed by ISO that these
'notes for guidance' are not a new or different standard. Quality systems
are still assessed against IS0900 1. They are conceived as an aid to users
of IS09001 seeking to apply it in a software environment.

They are not intended to add to the requirements of IS09001. Their
scope is defined as providing guidance:

' ... where a contract between two parties requires the demonstration of a
supplier' s capability to develop, supply and maintain software products.'

ISO (1991)

12.3.1 00 we need standards and third party accreditation?

Surveys of current practice make alarming reading. In a survey carried out
in 1991, over 40% of companies claimed no quality assurance function at
all (Davis et al., 1993).

The question asked was 'What type of quality assurance standard does
your department implement?' The responses are shown in Fig. 12.5,
where multiple responses are classified according to the most rigorous
procedure employed.

In an earlier survey, Price Waterhouse (1988) found quality practice to
be extremely variable and it was this that led to the establishment of the
TickIT initiative to promote good practice in this area.

www.manaraa.com

none

181 party

32%

The role 0/ standards: IS09000 and TicklT 201

3rt! party

22%

Fig. 12.5 Uptake accreditation by type of quality practice.

If we look at the percentage of companies with an externally
certificated quality practice, then only 22% of companies in this survey
had certification. The 1991 survey indicates that the take-up of
certification is significantly greater amongst external software suppliers;
i.e. those driven by market forces to demonstrate competence, or at least
those required to have obtained the certification as aprerequisite of
bidding for contracts. Of those companies which could be c1assed as
software suppliers, 58% had externally accredited quality systems,
whereas only 10% of the companies who used their software internally
had externally accredited quality systems.

However, one would expect companies using software engineering
methods and tools to be more 'quality aware' than the average. To
examine this view, the respondents were c1assified according to the
development method employed used. The results are shown in Table
12.7.

In all cases except one, practice exceeds that ofthe overall sampie,
indicated by dotted lines in Fig. 12.6.

www.manaraa.com

202 CASE is just part 0/ the process

Table 12.7 Quality practice amongst users of software engineering methods

For those using % with some QA % with external
certification

(59% of all companies) (22% of all companies)

SSAOM 100 50

Yourdon 68 28

JSO 76 38

VOM 75 39

Gane/Sarson 73 40

0-0 design 75 35

Prototyping 74 39

Oata flow diagrams 62 20

Information engineering 64 26

Other methods 79 29

100 . % WllhOA

0 % WIIh exlernal C8ruficatlOn

90

80

70

60

50

40

30

20

10

SSAOM Yourdon JSO VOM Gane 000 Proto OFO IE Other

Fig. 12.6 Quality practice amongst users of software engineering methods.

www.manaraa.com

The role of standards: IS09000 and TickIT 203

Benefits c1aimed (Low, 1992) for companies to be derived from a
third party accredited QMS inc1ude:

• Reduction in avoidable costs at all stages.

• Earlier error detection. The later an error is discovered, the more it
costs to correct, and the less likely it is to be properly corrected.

• Greater likelihood of on-time delivery, leading to improved image
with customers.

• More effective use of scarce staff. Better development of staff
knowledge and skills, thus improving market values for the staff.

• Improved staff retention ratios: they prefer to be members of a team
who 'have got the QA message'!

• Greater sense of professionalism, leading to easier recruitment
because quality is attractive.

However, there is considerable sceptlclsm about the short- to
medium-term business benefits. For small to medium size companies the
investment required is considerable. For those companies already
investing in new methods and tools, the costs may simply be too high.

Quality management in the IT field is 'still very immature' (TickIT,
1991). With some national variation, this statement appears to apply to
the rest of Europe. However, with the advent of the Single European
Market (SEM) in 1992, there is growing pressure for accreditation to
recognized international standards. In recognition of this trend, the UK
Govemment has launched the TickIT initiative to boost awareness of
certification issues and to increase levels of accreditation amongst IT
firms in the UK. This programme is designed to promote the EN29001
standard together with the IS09000-3 notes for guidance for software
development.

It is easy to measure the effectiveness of such programmes by the
number of firms achieving accreditation. It is less easy to quantify the
overall effect upon software quality.

In general terms, the application of continuous improvement
techniques and software engineering methods are complementary.
Certainly, the methods and working practices are generally in sympathy,

www.manaraa.com

204 CASE is just part of the process

both being based upon a systematic process. However, the practical
implementation, particularly of CASE tools, may not be so
straightforward.

Rather surprisingly, many CASE tools do not provide the facilities
needed to support a quality management system implemented in
accordance with IS09001 or IS09000-3. In particular, almost all tools
fail to provide adequate configuration management tools. They are also
poor in the area of testing and auditability. It was reported to the authors
recently that a software supplier accredited under the TickIT scheme had
found only one CASE tool on the market which supported their quality
management practices sufficiently to justify purehase.

12.4 CASE STUDIES

12.4.1 Company A

The company was established in 1987 to provide innovative technology­
based training solutions, specializing in hypertext applications. Initially, a
small team worked out of the local University's Centre for Software
Engineering Technology but they are now an independent company based
on the University Innovation Park.

Being a new and small company in a highly competitive marketplace,
it was soon evident that success depended upon a 'quality approach' to
products and services: providing what customers want on schedule, at
agreed cost and right first time.

The first projects were large scale and high profile - a hypertext
Guide to Glasgow for the Garden Festival and a training course on pcb
components for an electronics company. For these it was necessary to use
sub-contract programmers to complement the small team. This created
many problems but in many ways this brought long term benefits because
it highlighted many, many examples of what could go wrong!

One of the UK's leading life offices recognized that technology based
training had a significant role to play in the growth and development of
the organization. Against strong competition from large, long-established
companies, the company won the contract to design and develop a
training and information system for a large financial organization's
branch network and head office training centre.

The system would initially run on stand-alone PCs with the option to
be networked later. The success of this pilot project would determine the

www.manaraa.com

Case studies 205

longer term plans for large-scale implementation of technology based
training and for the establishment of an in-house development unit.

It was agreed that the first application would be induction training for
new staff. The system would introduce trainees to the organization, their
role and job function, the concept and history of life assurance and to the
organization' s products.

The dient gave a high level of commitment to the project, making a
significant investment in hardware and in people. Besides developing the
first system, the company also helped recruit and train a team which
would be responsible for maintenance and development of future
systems.

It was essential that the company avoided stereotypical software
problems: not knowing when the product would be complete, how much
it would cost and how it would perform. A dramatic change in the initial
specification could not be permitted mid-project. In addition, it was
necessary to ensure that every member of the team worked to agreed
standards, documenting every stage of design and production.

Hypertext systems have great potential to get out of hand, so
solutions to these problems had to be found, as this was the project on
which the company' s reputation would be built.

The developers first sought the commitment of the 'subject expert'
who took responsibility for the content of the 'courseware' . Once this
was obtained, regular meetings were scheduled and procedures for
recording changes to specification were agreed.

The team met on a regular basis and original time scales, costs and so
on were reviewed at each meeting. Early identification of problems
helped keep the project on track. Formal inspection of the system at each
stage ensured that all parties fully accepted each component of the
system. A structured design method was used to enable and ensure 'good
practice' .

The method facilitated the following practices:

• A framework was defined, providing a step-by-step object oriented
approach to the courseware. Aims and objectives were defined against
which the design could be matched.

• The method provided an understandable illustration of how the
courseware would be structured for the dient and the development
team.

www.manaraa.com

206 CASE is just part of the process

• The method set a pattern for documentation, ensuring that every stage
was documented and 'signed off before progressing to the next stage.

• The method legislated against the temptation to work directly on
screen before designs had been agreed.

• The method allowed extensive use of prototyping: vital to the dient to
see what they were getting.

• The method enabled meaningful communication between all parties.

Having agreed that there must be a systematic approach to the entire
project, all aspects of this were implemented despite the many
temptations to 'reverse engineer' the product.

Design techniques will document bad design just as happily as good
design. Therefore, design alone is not enough; it takes commitment, the
right culture and a supportive environment.

The benefits were apparent to the company and to the dient. The
company delivered, on time, a system of which they had 'ownership':
there were no unexpected characteristics, they were familiar with its
content, and it did what they wanted. Any minor changes which were
required after rigorous testing by their analysts and users were made
quickly and easily without serious repercussions for the system as a
whole. The method gave the company and the dient a good basic
framework and procedure for future development, allowing new people
to join the teams and work creatively but to an agreed standard.

In producing the system, a pattern of 'best practice' was established
which enabled the company to refine and improve productivity.
Encouraged by the success, the company is now moving towards
automation of project management and documentation.

The system took nine months from initial discussion to final
implementation. Following tests, there were two days to make fairly
major changes to file structure as window handling problems became
evident. At the time of writing, the system has been in full use throughout
the company for some months. No system defects have been reported in
that time.

The dients have several major projects under development and are
now doubling the size of their team. The company is building on this
early success.

www.manaraa.com

Case studies 207

12.4.5 Company B

The second company is part of a larger group supplying software to a
range of markets in the public and private sector. The company supplies
software to housing departments within local government.

The company became part of its current group in 1987. In 1988, the
company went through something of a crisis. The local govemment
market is driven by legislation. When a major new piece of legislation is
introduced, e.g. the Housing Benefit Act, 1988, there is a major
opportunity for the software suppliers to seIl new systems to support the
new regulations. However, timing is critical and time scales for
development are often very short.

In 1988, the company were launching a new housing benefit system.
The system had to be in place by April to satisfy the needs of local
authorities considering new legislation coming into force then. To meet
their obligations, the company was forced to release a product which was
not properly tested and had some unfortunate errors.

Customer reaction was predictably unfavourable, and the company's
image suffered accordingly. If the company was to remain in this market
place, then a new start was required to regain customer confidence. It was
decided to develop a new product with a new set of working practices,
with the emphasis upon quality. The parent company made some changes
to the management of the company and then made funds available for a
new product.

The new regime was set out in the companies' service charter:

'The Service Charter outlines the company's commitment to quality
products and services. The central element is a product and services
guarantee. This guarantee means that services will be repeated if they
do not meet customers' expectations. Ultimately, customers' money
will be refunded if the company fails to address problems effectively.
The move to provide this guarantee was a well-considered business
decision. If deficiencies occur in our product or services, they cost us
and our dient money. We will not hide fault fixing charters under
maintenance costs. This means we have the best possible structures to
eradicate imperfections from our software and support services. '

The new product was an integrated management information system
for housing departments. At the end of 1988, the company spent five

www.manaraa.com

208 CASE is just part 01 the process

months on a detailed investment appraisal, covering market research,
product proposal, checkpoints, competition, risk analysis, technical
analysis and financial analysis. This appraisal made estimates for the
period up to 1990.

The company chose to use the fuH SSADM method. This proved
popular with development staff. It was helpful both as a basis for
consistent and effective working practice and as a vehicle for changing
the whole ethos of the company towards the quality culture sought by the
organization. However, a CASE tool was not used as this was considered
to represent too much change and too high a risk. The system was
developed using INGRES on Pyramid and then SEQUENT hardware.
The production system was targeted at a range of UNIX hardware
including machines from ICL and IBM as weH as SEQUENT.

The software engineering method was only part of the holistic
approach adopted, characterized by:

• Management involvement from the start of the project.

• AHowing sufficient time to develop and test the product properly,
determined by development needs rather than short term commercial
pressures.

• U se of a stable and experienced staff.

• Extensive training for the stable workforce.

• Extensive use of the PMW project planning tool.

• Introduction of team working practices.

The whole approach was based upon a quality management system and
once the system was in place, certification under IS09000 was applied
for. By 1992, the whole operation had received certification for its quality
procedures and the company was able to present itself to the world as a
company that had very much put its house in order.

The first objective of the change in working practices and the
introduction of SSADM was to deli ver to the market place within
carefully planned time scales a product that was reliable and would re­
establish the company' s reputation.

This objective was reached, with benefits arising in the coding and
implementation stage from the use of SSADM at the analysis and design

www.manaraa.com

Summary 209

phases. The transition in working practice was assisted by the adoption of
SSADM and a stable well-motivated workforce meant that training
investment was retained.

The second question of re-establishing the company's reputation
seemed to be a tough task at first. A degree of scepticism meant that
many customers wanted someone else to take the risk and be ftrst.
However, as systems have successfully been instalied, the scepticism has
receded.

In terms of customer perception, there is little doubt that external
certiftcation of the quality systems has helped this process of building
conftdence. Inside the company, the process of external certiftcation has
caused little change, since the practices were already established and the
certiftcation process is regarded as a vindication of the process that the
company had already been through.

12.5 SUMMARY

In this chapter we have explored the relationship between continuous
improvement techniques and the introduction of tools and methods. We
have shown how there are dose links between the two and how the two
may complement each other when carefully introduced. At the same time,
wamings have been sounded regarding the dangers of too much change at
one time. The key points are:

• Software engineering methods and tools are part of a broader process.

• The overall process is servicing the information needs of the business.

• To ensure that business needs are met, all parts of the process must
function effectively.

• A quality management system documents a systematic process for all
activities.

• To be effective, it must be accompanied by cultural change.

• IS0900 1 is an international standard deftned for quality management
systems.

• IS09000-3 provides notes for guidance on the application of the
standard to software development.

www.manaraa.com

210 CASE is just part of the process

• Many software producers have no systematic quality procedures.

• Many CASE tools do not provide comprehensive support for quality
management systems.

FURTHER READING

Crosby, P.B. (1986) Quality is Free, McGraw-Hill, London.

Deming, W.E. (1986) Out of the crisis, MIT Center for Advanced
Engineering, Study, Cambridge, Mass.

Juran, J.M. (1979) Quality Control Handbook, 3rd edn McGraw-Hill,
London.

These are c1assic texts from arguably the three principal authorities in
the field.

Gillies, A.c. (1992) Software Quality: Theory and Management,
Chapman & Hall, London.

This text looks at software quality issues specifically, and combines
software engineering with quality management ideas.

Oakland, J. (1989) Total Quality Management, Heinemann, London.

This is perhaps the best overview of total quality management.

www.manaraa.com

13

When it works ...

13.1 INTRODUCTION

So far in this book, we have covered aseries of case studies, each of
which describes very different experiences that companies have had with
the introduction of CASE tools and the development of IT systems. In the
face of many overly optimistic views of the technology, this book has
tried to point out some of the potential pitfalls and problems.

However, the purpose of this book has been to point out the pitfalls so
that others may leam from past, often painful experiences. In this final
chapter, the emphasis is on looking at the positive factors that have led to
real business benefits where these have been realized. These do suggest
that an effective and appropriate use of tools and methods can lead to
significant gains for the business or organization concemed.

13.2 REASONS FOR SUCCESS

The case studies which have been expounded in the previous chapters of
this book have contained several lessons concerning why a particular IT
development may be successful. The main messages to be gleaned from
these are outlined below:

• Methods can be very important, and extremely useful, in an IT
development, and tools can be used to support these methods. It must,
however, be remembered that the tools are for support, and that
training in both methods and tool use is vital to the success of the
project.

• Methods come before tools, and total commitment to the method (and
use of the tools) is vital.

www.manaraa.com

212 When it works ...

• Change should be made in an evolutionary, iterative and gradual
manner, and revolutionary change is a recipe for disaster.

• People factors are the most important in any scenario. It is the people
in any organization that will make the introduction of CASE tools a
success, or otherwise.

• Get staff commitment. This is vital to the success of any project.
Commitment must be present at all levels in the organization. It is
particularly important that the senior management is totally committed
to the introduction of any methods and CASE tools.

• Staff training in the use of CASE is essential for success. Enthusiasm
will quickly turn to frustration if staff cannot achieve what they wish
because of a lack of specific skills.

• Productivity may not arise immediatelyon the introduction of methods
and/or CASE, but it must be realized that great benefits will result in
the long term. Cost justification is, of course, very important but may
be difficult to put together as a result.

• Consultants can be very useful and can, indeed, be the making of a
successful project. However, you must be careful to get the correct
consultant for the job. Communication between the consultant and the
staff of the company is a key issue.

13.3 PROBLEMS

There are a number of problem areas in relation to the success, or
otherwise, of tools and methods.

13.3.1 Adoption

The costs of software 'spoilage' that were given in a 1988 report for the
Department of Trade and Industry (DTI, 1988) were extremely high. In
that year, it was estimated that amongst software produced by UK
suppliers and sold to UK users, more than f500M p.a. were being wasted
due to poor quality software.

This wastage could be accounted for in terms of:

www.manaraa.com

Problems 213

• low productivity

• project over-runs

• error correction

• unnecessary maintenance.

It was further estimated that if the totallifetime costs were taken into
account the software 'spoilage' costs would be flOOOM p.a. for the
sector. This figure is equal to the cost charged for the software on
delivery!

More detailed facts regarding the use of systematic methods and
CASE tools have been obtained from analysis of the data collected from
the survey undertaken by Stobart et al. (l991b) referred to in Chapter 4.
The survey showed that only 18% of respondents were actually using
CASE. A follow-up questionnaire to a selection of the non-respondents
indicated that the major reason for non-replies was that their
organizations were also not using CASE. Hence, the true use of CASE at
the time of the survey was probably weH below 18% - possibly as low as
6%!

The survey data also provided useful information on the use of
systematic methods in the sector. The majority of organizations who were
actively using CASE were also using systematic methods. These probably
represent the more technologically aware companies. However, there are
a large number of companies who are neither using CASE or methods.
Analysis of survey data on code development techniques and methods
also confirmed that many organizations had failed to adopt software
engineering approaches.

A fundamental problem in the adoption of new technologies is a lack
of dear unbiased information.

The people who have the best information are the vendors. They are
not likely to provide an objective view. Academics have the time to
consider a variety of methods and tools but little first hand practical
experience. Practitioners are generaHy too busy coming to terms with the
technology to feed back information. Failures are some of the most
informative examples but pride and company prestige often prevent these
coming to light. At least one company declined to provide a case study

www.manaraa.com

214 When it works ...

for this book because of the delicate situation between them and their
CASE tool supplier.

A problem often cited is that the rate of change is such that
information is quickly out of date. Some readers may weH feel that the
case studies in this book are less relevant already because of the time to
reach print.

However, one of the principal messages which emerges from this
book is that the keys to success are good management, good working
practice and a good understanding of the problems both of the nature of
software development and of the business to which the software is to be
applied. This is true whichever method or tool is to be employed. It was
true in 1988, 1993 and will still be true in 1998.

13.3.2 Methods

The major problems associated with the adoption of cost effective and
systematic development methods are:

• The current wide range of methods that are available and the lack of
experienced staff.

• Unwillingness of organizations to accept change and adopt any new
'standardized method'. In many cases this is simply due to the costs,
primarily in staff time, that are incurred with any major change.

• Unwillingness by software developers themselves to accept and adopt
changed working practices.

• The uncertainty of the long term future of particular methods and the
possibility of a European Standard method.

• An unwillingness to consider and accept differing methods, if an
organization has already invested heavily (and in some cases very
heavily) in methods of its own.

• Biased pressure to adopt the methods and related tools promoted by
suppliers and consultancy organizations.

• A lack of high quality material to support technological information
transfer between the developers of methods and the intended
practitioners of the methods.

www.manaraa.com

Problems 215

13.3.3 CASE

The prospective market for CASE tools has been confused by the large
variety of different products that are available. In an attempt to darify
matters tools have been categorized in an attempt to more accurately
describe their functions. Unfortunately, tool vendors and manufacturers
have not totally standardized on what these tenns mean, so such
categorization has simply added to the confusion, and not removed it!

The other major problems are:

• The current high cost of CASE tools. These costs were given as a
major reason for not adopting CASE by the respondents to the survey
by Stobart et al. (1991b). The actual cost of CASE (per staff member)
appeared to be approxima~ely double what non-CASE users were
willing to spend.

• The high costs for extra hardware and initial staff time in the adoption
ofCASE.

• Lack of management support to invest in and use tools (and related
methods).

• Unwillingness of staff to adopt new working practices.

• The possibility that if an organization is not adopting good
development practices, the introduction of CASE may simply allow
the development of bad software more quickly!

• Some tools are of too general a nature to be of any significant benefit
whilst others are so dependent on a particular method that adoption of
the tool means that the organization must also adopt a method which
itself may not fuHy satisfy its needs.

The solution to overcoming these barriers lies in adopting a dear
strategy based upon asound financial case. With senior management
commitment to the strategy and commitment from the staff themselves,
the goals will be attained and a successful outcome reached.

www.manaraa.com

216 When it works ...

13.3.4 Human problems

In the adoption of methods and tools there can be major problems with
staff at all levels. People do not like change, especially if it is a possible
threat to their livelihood or the way in which they have to work.
Computing professionals are like everyone else in this respect. Managers
lack confidence in their ability to understand and control the new
technology, whilst designers and production staff may believe that the
methods and tools will destroy the artistic and creative aspects of their
work.

It is true that adoption of the new technologies has a large impact on
working practices and that many members of staff have been unable (or
are unwilling) to alter their working practices. This 'Luddite approach'
has greatly contributed to the high rejection of the technology in the
commercial and administrative sector.

Just as some staff are unwilling to accept change, there are others who
will. However, their expectation of what the new technology can offer
may be too high. They are convinced that there will be overnight
improvements in all areas of their software development. This is, of
course, untrue, since the real benefits are in the long term. The non­
fulfilment of their expectations leads to dissatisfaction and an
unwillingness to use the technology in eamest.

The reaction of many staff will depend upon the way that the new
methods and tools are implemented. People often resent the manner in
which things are done rather than the deed itself. Where change is
concemed, people are often particularly insecure and suspicious. The
sophistication of CASE tools is such that automation and semi­
automation of software development will make staff more skilled not
less.

13.4 CASE STUDIES

The following case studies illustrate the benefits that can accrue from a
successful implementation of CASE tools and methods.

13.4.1 A strategy for improved productivity in system development

The company concemed is one of the most innovative financial services
companies in the world. It is the holding company for companies which

www.manaraa.com

Case studies 217

transact life insurance and pensions business, and manage unit trust and
offshore funds, and property investment and insurance broking services.
The company has, from its earliest stages, adopted data processing as a
key element in its management strategy.

The undoubted success and subsequent growth of the company have
led to an increasing requirement for IT resources to support the demand
for information systems. The company currently has 280 staff engaged in
systems development and maintenance, and overall computing power
running at 44 MIPS, with 60 gigabytes of disc storage capacity.

This demand for IT resources has stressed the need for adherence to
time scale and cost considerations which are critical to product
profitability , forecast launch dates and the creation of competitive
advantage. Against this background, the company has approved a strategy
of using software engineering to improve systems development
productivity.

Consideration was given to the types of systems requiring
development over the next 3-5 years, and the likely methods to be used,
such as bespoke, package, end user computing, etc. were predicted. A
productivity strategy appropriate to the needs of the business was
formulated, and its objectives are:

• to deli ver systems faster and cheaper;

• to maximise effective user involvement;

• to promote a consistent approach to systems development;

• to remove technical complexities from the process;

• to reduce development workload on mainframe computers.

These objectives were to be achieved by automating the development
process using wherever possible networked PC based tools.
Intercommunication needs between the development team members and
the company highlighted the necessity for PC networking, avoiding the
use of high-priority and heavily loaded mainframes, whilst retaining
mainframe access when essential.

Five possible options for PC networking were identified and assessed
against a list of required functions, leading to the selection of Banyan for

www.manaraa.com

218 When it works ...

extensive trials over a four month period with stringent conditions
inc1uding:

• tests of all communications paths envisaged;

• a volume test running 40 PCs on one file server;

• links via the Local Area Network (LAN) to the existing computers;

• testing a variety of PC software and system development;

• software.

The network software and hardware worked weH, with some links
being smoother than others. The majority of problems were concemed
with the unavailability of networking versions of certain packaged
software, necessitating their use only at the PC level (but storing the
results on the file server). As software engineering methods are
introduced, the organizational responsibility for imp1ementing the
networks amongst al1 deve10pment staff needs to be determined.

One aspect of the deve10pment process being automated on the
network was programming. Prior investigation and testing of structured
programming 1ed to the conc1usion that difficu1ties were caused by the
lack of expert support and too1s which wou1d simplify drawing and
maintaining program structure diagrams. The introduction of two
automated too1s by the vendors of Jackson Structured Programming (JSP)
gave facilities not previously available and led to the decision to pilot test
structured programming.

It was envisaged that the introduction of a PC based programmers '
workbench would enable new prograrns to be developed, compiled and
tested before their introduction on the mainframe. A major factor was the
necessity to increase the productivity and quality of COBOL
programming, and it was intended to link the corporate data dictionary
into the workbench to automate the production of the COBOL data
division.

The PDF (program development facility) is a PC or mainframe based
tool used to enter and amend JSP program structures in diagrammatic
form. Operations and condition lists are produced as a result of JSP
program design. PDF then uses this input to generate automatically the
schematic logic of the COBOL procedures division in the form of
pseudo-code. The other program divisions can also be input through PDF.

www.manaraa.com

Case studies 219

JSP-COBOL is a PC or mainframe based pre-compiler which takes PDF
data and generates COBOL source code. The PC based compiler/editor,
CICS emulator and Animator from Microfocus were selected to link into
the Jackson tools on the basis that there are interfaces to, and capabilities
for working with, JSP tool and Excelerator, and on its level of market
penetration.

This was treated as a high-priority project with a defined time scale
and end date. The discipline enforced by the fixed end date was extremely
important, in that failure to adhere to the time scale caused by the
leaming curve led to the creation of a time backlog which had to be
reduced by subsequent productivity gains.

The first stage involved the introduction of the JSP technique using
PC based PDF and mainframe based JSP-COBOL. This was expedited by
the assistance of a JSP expert from the internal development centre in
training, on-the-job education and support of the largely inexperienced
staff engaged on the project, which was the development of a sales force
administration system on a Unisys system.

The second stage involved the development of a valuation system for
the Life Actuarial department using PC based PDF, JSP-COBOL,
Microfocus compiler, editor, CIeS emulator and Animator and the
Banyan network. This was targeted for use on the Amdahl system, with
support again from the development centre.

Comparison of programming productivity by an independent review
body on the initial project gave positive results, leading to the conclusion
that it would be reasonable to expect gains of:

• up to 10% using JSP;

• up to 17% using PDF;

• up to 15% using JSP-COBOL.

As a result, 80% fewer programming errors and 25% fewer design faults
had occurred. Once completed, the valuation project was reviewed by an
independent body whose main (subjective) findings were:

• All JSP tools worked without difficulties once initial incompatibilities
between the PC compiled COBOL and the mainframe compiler were
fixed by Microfocus.

• The animator improved confidence in program testing.

www.manaraa.com

220 When it works ...

• Control over the versions of programs compiled to the mainframe was
improved by having only one person with access to DOS facilities to
copy from the Banyan.

After initial scepticism, the evaluation team members endorsed most
strongly the use of JSP supported by software engineering.

13.4.2 System development for arecord company

This case study is based on the experiences of a computer consultancy
and software house formed in 1985. The two founders of the company
had previously held senior executive posts in a major UK software house
and knew a lot about developing commercial mainframe systems, but not
so much about other hardware and software platforms.

The company's forte is to evaluate customers' needs and to provide
packaged or bespoke systems to meet these needs, including the use of
new methods and tools such as CASE.

The company recognizes that the most difficult area to get right in the
whole of IT is establishing what it is that the user really needs. The user
always knows that he/she has a problem and hence a requirement, but
defining that in terms that mean the same to computer professionals is not
easy. CASE can go a long way to solving this problem.

The company has worked with major corporates in financial, retail
and manufacturing industries in diverse application areas. These include
securities trading, consumer complaints, order processing, distribution
etc. The majority of these developments are undertaken in relational
databases such as ORACLE, Ingres and Informix in UNIX environments
and in Synon/2 on the IBM AS/400.

The company aims to deliver quality, which is measured in terms of
value for money. The intent is to provide the user with a robust, flexible,
documented system that will meet their business needs for a reasonable
fee.

To meet this aim, development tools are used together with
disciplines embodied in their standards. Productivity tools are used to
maximize value for money: the savings gained must outweigh the initial
cost of the tool over its lifetime. The overall cost includes education and
training and a few inevitable mistakes along the way.

This case study focuses on their experience of using CASE, relational
databases and 4GLs in particular by profiling one project. The

www.manaraa.com

Case studies 221

experiences gained across a number of projects are, however, relevant,
particularly in the areas of education for both computer and user staff.

The project to be looked at in detail is a system to calculate copyright
revenues for arecord company. The tool used in the project was Synon/2.

Synon/2 is variously daimed as a Computer Aided Software
Engineering tool (CASE), a Fourth Generation Language (4GL) and a
code generator. The company's view is that it is not a full CASE tool as it
does not provide the all-embracing aids provided by full CASE tools.
However, it does have elements of CASE about it; it certainly is dose to
a 4GL and it generates either RPGIII or COBOL code. It works as a
design tool by the use of Action Diagrams and provides standard
functions which are then used to generate code with no further
intervention.

The company undertook a trial in collaboration with a dient, sharing
the cost of education and training. Four staff members were selected for
training: one senior analyst/prograrnrner, two analyst/prograrnrners, all
three of whom knew RPGIII and, lastly, an analyst/prograrnrner who
knew other 4GLs but had had no experience of RPGIII. The immediate
success stories were the senior analyst/prograrnmer who could see the
drudgery being taken out of the job, and the analyst/prograrnmer without
RPGIII. The others had a tendency to exarnine the code being generated
and to feel they could better it.

Experience with other 4GLs suggested a fairly long elapsed time
before staff become proficient and this proved to be the case. However,
enough was learnt from the initial trial to see two aspects dearly:

• There are savings to be made by using Synon/2 instead of RPGIII, in
both actual and elapsed time.

• The code produced by Synon/2 is robust and reduces testing time.

Synon/2 was subsequently used with other clients on major
developments, one of which is discussed below.
Towards the end of 1988, the company was asked to tender for a
development to calculate the royalties due on the use of copyright
material for arecord company. The copyright department kept arecord of
sixty thousand songs on index cards and wished to move this on to a
computer for copyright calculation purposes. In addition to the
maintenance of these titles, they also required flexible searches so that
new record and disc albums on a particular theme could be compiled.

www.manaraa.com

222 When it works ...

The consultants were not involved in the preparation of the functional
specifieation, whieh had been prepared by a competitor on the basis that
the system would be developed in RPGm on an IBM System/38.
Towards the end of the functional specification phase the record company
decided that the development should be undertaken in Synon/2 and
selected a number of companies with Synon/2 expertise to tender, for a
fixed price. The consultant company won the bid, not because they were
the lowest price but because they were able to demonstrate experience
with, and knowledge of, Synon/2.

The development was complex and estimated at 5 man years work to
be completed in about 10 months. The project was managed very tightly.
Not everyone on the team had Synon/2 experience and, indeed, the team
leader herself was new to the product. The project was divided into a
number of distinct phases, but to begin with the data model had to be
reworked and the team had to satisfy themselves that the design was
sound. This is an essential part of any 4GL development. More time must
be spent at the outset getting the design correct. It is not impossible to
change it later, but benefits are only fully realized when design changes
are minimal.

Work was started on the reference file maintenance, which is an area
in whieh Synon/2 is very powerful. One task estimated at 70 days in
RPGm took a newly trained graduate with no previous computing
experience, just 15 days to complete. The next stage was the transaction
processing, another area where Synon/2 is good and the team gradually
built up confidence.

The user was very co-operative. It had been pointed out in the tender
that it would be necessary to compromise on screen design to obtain the
benefits from Synon/2. Certain items appear in fixed positions and
although they can be changed, doing so would negate Synon/2's
automatie code generation. The user accepted all the screen designs
without complaint. There were, however, some difficulties relating to the
functional specification with the original intention for the development to
be undertaken in RPGIII. The processing of data files would have
resulted in cumbersome screen usage for the user and therefore, in a
couple of instances, RPGm was employed to meet functional
requirements. This was only done after discussions with Synon
themselves to explore alternative solutions.

The batch programs gave some diffieulty, as did the reports. There
were a number of large ca1culation programs that contained complex

www.manaraa.com

Case studies 223

requirements. These may weIl have taken just as long to complete in
Synon/2 as they would have done in RPGIII.

Standards were set at the start of the project and quality assurance
procedures ensured that regular checks were made on adherence to
standards, general understanding of Synon/2, etc. Staff were supported by
an experienced Synon/2 consultant and this was found to be valuable, if
not essential, for newcomers to the product.

On delivery to the record company, the system was subjected to
acceptance test trials. The system went live and the user was satisfied.
They have the system that they require with no major problems and very
few minor ones.

There were a few problems with two or three areas on performance
but fortunately these could all be corrected easily by using a different
Synon/2 function and changing the environment on the AS/400.

It is perhaps arguable whether Synon/2 is a CASE tool or a 4GL.
However, this is not reaIly the issue. The company has used Excelerator
on other developments and are currently evaluating the link between the
two products. The important message is that there are undoubted benefits
to be gained through using tools such as Synon/2. Effort is increased at
the design stage of a project but decreased during the build phase.

Maintenance is easier, faster and therefore cheaper. The use of a
product such as Synon/2 can save between 25% and 30% of development
time and should result in an easier to maintain system.

It isn't cheap. However, any organization that is faced with f:250 000
of new development over a four year period will gain by using a tool as
sophisticated as Synon/2: that figure inc1udes the education and training
costs. Looking at specific points, there are a number of management
issues. Firstly, management has to make a commitment to using Synon/2.
It is often said that the best way to start using Synon/2 is on a small non­
urgent project. However, this leaves the trial in the hands of the
technicians and will, by its non-urgent nature, ensure that management
does not give it very high priority. Urgently required high profile projects
readily attract management commitment!

Management also has a role to play in educating users. Whatever 4GL
is used, it is vital that the organization is committed to it and that users
will be trained to expect longer time in design and less flexibility with
screens and reports, in return for lower costs and higher quality. Business
analysts should know what the tool will do - and what it will not do. That

www.manaraa.com

224 When it works ...

way the business analyst can influence the user over screens and reports
and general benefits provided by such new tools.

13.4.3 Quality in real-time systems

The company in this case study has been in existence for nine years and
now employs around 150 people. The company has a number of
departments, inc1uding one which carries out essentially fixed price
project work for the nuc1ear, petrochemical and automation industries.
Quality, delivery and cost are the key parameters which determine the
success of a development project and ultimately result in the company's
goodname.

Understanding new customer requirements and expectations is one of
the most complex aspects of the company' s operation. Operating under a
quality system, there is an obligation to present a certain minimum
amount of design information to a pre-defined presentation standard. This
can create difficulties when attempting to be competitive. Clearly
flexibility is required on the part of the quality system. Engineers must
take on board experience gained with previous projects, whilst
maintaining a c1ear image of the expectations of the project.

It is vital to understand the scope of a project but it is also important
to gain insights into the quality of the customer! Key factors which affect
confidence are the size and constitution of their project team, their own
knowledge of the requirements, the views of any third parties who may be
involved and the customers' understanding of future needs. All these
factors need to be evaluated along with the more 'conventional' matters
of hardware and development teams.

Variation control is an area of great concern to managers and several
mechanisms have been set in place to ensure compliance with customer
requirements. Regular technical design reviews, carried out by the project
team and led by an external moderator, can highlight danger areas both in
terms of lack of definition and potential project overrun. The use of a
formal testing scheme with supporting fault reporting systems for all
stages of code testing maintains good records of the evolution of the
application.

Fault reporting is particularly relevant to customer witness testing.
Two main problems occur during this phase. Once the system is
operational, one may find that the customer suddenly realises that the
system is missing some operational attribute which has been overlooked

www.manaraa.com

Case studies 225

from the inception of the project. However, the greatest number of
requests for variation come from such things as graphics layouts, reports
generation etc. It has been found that a simple 'pro forma' to police
change requests coupled with good and simple layout of design
documentation ensures a sound basis for negotiating contract
amendments.

Sizing a computer system, particularly where memory upgrades
involve total redesign of the core processing system, is a vital part of the
initial design. Thus, two techniques have been developed for ensuring
that the system is adequately specified. The primary technique for
assessing pro gram size is for each member of the team to read all the
available design documentation and to attempt to code (even on paper)
some representative sampie. By assessing and scaling those development
times, the resulting code size can be estimated. A secondary method,
often used in simple sequential applications, is to base memory
requirements on the amount of inputs and outputs required to carry out
the control of the system.

Modular design is a fine design goal. Implementing 'modules' of
software in environments which do not readily support such an approach
adds some interesting problems to development. Amistake sometimes
made by development teams is to divide an application into rigorous
vertical segments based on the Function Design Specification. Thus one
module will control product make up, another might control reaction etc.

As can be seen, application development is really a matter of selecting
the correct vertical or horizontal model and then impressing the
programming team with the importance of the application model and
ultimately monitoring their progress as detailed above.

Maintaining progress can cause problems of projects which have time
scales which stretch beyond a couple of months. It is therefore vital to
establish deliverables (usually through the planning system) which can be
seen in a week or two.

The transition to using Y ourdon design tools came about as a mix of
customer requirement and a personal decision by the management team
that a better way of visualizing the application was required.

lnitially, great doubt was raised about the suitability of the method to
real time applications and whether a 'real' software engineer could
generate and/or understand all these diagrams.

A mixture of product evaluation against areal application and training
provide a key in unlocking the virtues of the system.

www.manaraa.com

226 When it works ...

Once a customer (who was thankfully happy to take on board the
Yourdon concept) had seen the reduction in development time and, more
importantly, had realized the enhanced visualization which the data flow
diagrams and state charts provide, the developers could proceed with
some confidence that the system would work in other applications.

The great benefit which Y ourdon gave to both customers and the
programming team was that it acted as a bridge between the customers'
process views of system operation and the programming view. This
bridging can also be thought of as a way of adding formality to a design
and indeed it was surprising how quickly bottlenecks and omissions in
understanding of an application could be identified.

A further benefit (which was highlighted by the real time nature of
our applications) was the ability of data flow diagrams to segment event
based sequence control and alarm interlocking from continuous data
processing functions. This in turn adds a subtle 'modularization' to the
software which is useful in establishing neat code areas within the actual
program.

In summary, the use of Y ourdon has added a further layer of quality to
the development procedure. While requiring some learning and re­
thinking of an application by the customer and the supplier, it does
ultimately yield consistent and functionally correct software.

The company' s current long term development aim is to integrate
Y ourdon fully into the company, which will require staff training and
ultimately aseries of 'awareness' sessions for their customers.

The company were, at the time of writing, working on aseries of
'mIes' for the presentation of Y ourdon which will enable the direct
mapping of data flow diagrams, state diagrams and data dictionaries to
executable code.

13.5 SUMMARY

This chapter has focused upon three success stories. They have
demonstrated many of the lessons from the rest of the book. They have
shown how the use of tools and methodologies can help speed up the
development of a quality IT product. They have demonstrated that in
these specific cases:

• methods such as JSP and Y ourdon led to a successful IT development
and can help developers make large productivity gains;

www.manaraa.com

Summary 227

• CASE tools were very useful for the support of such methods.

They have also shown the importance of many of the factors
highlighted earlier:

• The many benefits of the new software engineering technology can
only be achieved if it is implemented and used correctly. If
development staff are uncommitted or fail to recognize the benefits
that can follow from systematic and automated software production,
then the technology will fail.

• No matter how advanced the technology becomes, without good
organizational attitudes it can do little to help surmount the many
difficulties that currently face systems development staff. Qnly full
acceptance of the technology by both management and staff will result
in success.

• The correct technology must be adopted. There is a c1ear need for
accurate and meaningful information regarding its use. For these new
developments to be accepted within commercial organizations, there
needs to be much better means of efficient and effective technology
transfer, and it is perhaps this area that needs to receive a high priority.

• If particular methods and tools are to be accepted and used there must
be a much better understanding of them, their use and the actual
benefits which they can bring. The underlying cause for several of the
problems which have been identified is simply fear of the unknown
coupled with a lack of unbiased, easily accessed information. To
overcome such problems we need to create enabling mechanisms
which will facilitate technology transfer and mutual understanding.

For the future, there are implications for the training and education of IT
graduates:

• Are these graduates equipped with the knowledge to enable them to
operate as effective software engineers within the commercial sector?

• Do their courses provide them with the necessary professionalism that
should be expected?

• How do they compare in these areas with graduates in the more
traditional engineering disciplines?

www.manaraa.com

14

Final thoughts

In this book we have tried to present the experiences of companies who
have implemented software engineering methods and tools with varying
degrees of success. We have also tried to draw out the lessons from those
experiences. From the many messages given there are two principal
messages which seem to occur repeatedly:

• CASE methods and tools have the potential to address problems or
create them. As powerful tools they can make a significant difference
either way. This is the pneumatic drill versus hammer argument. The
pneumatic drill is a much better tool for digging holes in the road, but
used incorrectly it will make a bigger hole in your foot!

• The difference between success and failure is not principally about
technology at all. The secret of success is good management. So if you
are waiting for software engineering salvation don't wait for the
perfect CASE tool to come along, but look at your processes, see how
they may be improved and develop an implementation strategy which
will almost certainly involve the methods discussed and may inc1ude
use of a CASE too1.

www.manaraa.com

Bibliography

REFERENCES

Ashworth, C. and Goodland, M. (1990) SSADM: A Practical Approach,
McGraw-Hill, London.

Awad, E.M. and Lindgren Jr ,1H. (1992) Skills and personality attributes
of the knowledge engineer: an empirical study, Proceedings IAKE'92
Conference, lAKE, New York.

Boehm, B. (1981) Software Engineering Economics, Prentice-Ha1I, New
York.

Barker, R. (1990) CASE Method: Tasks and Deliverables, Addison­
Wesley, Wokingham.

CCTA (1990) SSADM Version 4 Reference Manual, NCC-Blackwell,
Manchester.

Chikofsky, E.l and Rubenstein, B.L. (1988) CASE: reliability
engineering for information systems. IEEE Software, 5 (2), 11-16.

Constantine, L.L. and Yourdon, E. (1979) Structured Design, Prentice­
Hall, New York.

Crosby, P.B. (1986) Quality is Free, McGraw-Hill, London.

Davis, c., Gillies, A.C., Smith, P. and Thompson, J.B. (1993) Current
quality assurance practice amongst software developers in the UK.
Software Quality Journal, 2 (3), 145-161.

DeMarco, T. (1979) Structured Analysis and System Specijication,
Prentice-Hall, New York.

Deming, W.E. (1986) Out of the Crisis, MIT Center for Advanced
Engineering Study, Cambridge, Mass.

www.manaraa.com

230 Bibliography

Edwards, H., Thompson, J.B., and Smith, P. The STePS Method, To be
published by McGraw-Hill, London, 1994.

Ernst & Young (1992) The Landmark MIT Study: Management in the
1990s, Ernst & Young, New York, USA. p.4.

Finkelstein, C. (1989) An Introduetion to Information Engineering -
From Strategie Planning to Information Systems, Addison-Wesley,
Sydney.

Fisher, A. (1988) CASE : tools for software development, Wiley, New
York.

Gane, T. and Sarson, C. (1977) Struetured Systems Analysis: Tools and
Teehniques, McDonnell-Douglas, St Louis.

Gilb, T. (1988) Principles of Software Engineering Management,
Addison-Wesley, Wokingham.

Gillies, A.c. (1992a) Modelling software quality in the commercial
environment. Software Quality Journal, 1 (3), 175-191.

Gillies, A.c. (1992b) Software Quality: theory and management,
Chapman and Hall, London.

Gillies, A.C.(1993) LOQUM: locally defined quality modelling. Total
Quality Management (in press).

Hart, A.E. (1989) Knowledge Aequisition For Expert Systems, Chapman
& Hall, London.

Hughes, C. and Clark, J. (1990) CASE: the reality of current utilization,
Journal of Information System Management, 3 (3).

ISO (1986) Quality Voeabulary, IS08042.

ISO (1987) IS09000-9004, from BSI in the UK.

ISO (1991) IS09000-3, from BSI in the UK.

Jackson, M.A. (1975) Principles of Program Design, Academic Press,
London.

www.manaraa.com

References 231

Jackson, M.A (1983) System Development, Prentice-Hall, London.

Juran, J.M. (1979) Quality Control Handbook, 3rd edn, McGraw-Hill,
London.

Kirkham, J.A and Stainton, C. (1992) An analysis of the DTI
SOLUTIONS programme. The ITI Papers, 3 (3), 25-31, IT Institute,
University of Salford, Salford, Manchester M5 4WT.

Kliem, R.L. and Ludin, S.L. (1992) The PEOPLE Side Of Project
Management, Gower, USA

Lantz, K.E. (1989) The Prototyping Methodology, Prentice-Ha1l, New
York.

Lehman, M.M. (1990) Uncertainty in computer application and its control
through the engineering of software. Journal of Software
Maintenance, 1 (1), 3-28.

Longworth, G. and Nicholls, D. (1986) The SSADM Manual, NCC­
Blackwell, Manchester.

Low, C. (1992) TickIT, getting the message across, in Solomonides,
C.M., Kirkham, J.A, Bowker, P. and Gillies, AC., SOLUTIONS
Case Studies. The ITI Papers, 3 (1), IT Institute, University of
Salford, Salford, Manchester, M5 4WT.

Low, G.c. and Jeffrey, D.R. (1991) Software development productivity
and back end CASE tools. Information and Software Technology, 33,
(9),616-624.

McCall, J.A et al. (1977) Concepts and definitions of software quality.
Factors in software Quality, NTIS, 1.

Myers, G.J. (1979) The Art of Software Testing, Wiley, New York.

Naur, P. et al. (1976) Software Engineering: Concepts and Techniques,
PetrocelliJCharter, New York.

NCC (1990) PRINCE Manual, NCC-Blackwell, Manchester.

Oakland, J. (1989) Total Quality Management, Heinemann, London.

www.manaraa.com

232 Bibliography

PACTEL (PA Computers and Telecommunications) (1985) Benefits of
Software Engineering Methods and Tools, Department of Trade and
Industry, London.

Parkinson, J. (1990) Making CASE work. in Spurr, K. and Layzell, P.
(eds), CASE on Trial, Wiley, New York.

Peters, T, (1988) Thriving on Chaos, Macmillan, London.

Peters, T. and Waterman, R, (1982) In Search of Excellence, Harper and
Row.

Price Waterhouse (1988) Software Quality Standards: The Costs And
Benefits, Department of Trade and Industry, London. (Survey results
cited in Gillies (1992b) above).

Price Waterhouse (1990) Information Technology Review 1989/90,
Publications Office, Price Waterhouse, 32 Bridge Street, London, SEI
9SY, p. 19.

Price Waterhouse (1992) Information Technology Review 1991/92,
Publications Office, Price Waterhouse, 32 Bridge Street, London, SEI
9SY, p. 7.

Rock-Evans, R. (1991) CASE Analyst Workbenches: A Detailed Product
Evaluation, Volume 4, Ovum Ltd, 7 Rathbone Street, London, p. 47.

Salford University Business Services Limited (1991) Software
Engineering Solutions: Final Report, Department of Trade and
Industry, London.

Simpson, H. (1986) The MASCOT method. Software Engineering
Journal,5, 103-120.

Solomonides, C.M., Kirkham, J.A., Bowker, P. and Gillies, A.c. (1992)
SOLUTIONS Case Studies. The ITI Papers, 3 (1), IT Institute,
University of Salford, Salford, Manchester, M5 4WT.

Sommerville, I. (1989) Software Engineering, 3rd edn, Addison-Wesley,
Wokingham.

Spikes Cavell (1993) Software methodologies. Computing, 8 April, p.20-
21.

www.manaraa.com

Further reading 233

Sprouls, J. (1990) IFPUG. Function Point Counting Practice Manual
Release 3.0, IFPUG, Westerville, OH, USA.

Stacey, R.D. (1990) Dynamic Strategie Management for the 1990s,
Kogan-Page.

Stobart, S.c., Thompson, lB. and Smith, P. (1990) An analysis ofthe use
of commercial CASE tools. 4th Int. Workshop on CASE, California.

Stobart, S.C., Thompson, lB. and Smith, P. (1990) An examination of
the benefits and difficulties that the implementation of a software
development environment can present within the DP industry.
International Conference on System Development Environments and
Factories, Berlin.

Stobart, S.c., Thompson, lB. and Smith, P. (1991) CASE: software
development. lEE Computer-Aided Engineering Journal, 8 (3), 116-
121.

Stobart, S.c., Thompson, lB. and Smith, P. (1991) The use, problems,
benefits and future directions of CASE in the UK. Information and
Software Technology, 33 (9),629-636.

Taylor, J.R. (1989) Quality Control Systems, McGraw-Hill, London.

TicldT (1991) TickIT: Making a Better Job of Software, Department of
Trade and Industry, London.

Warnier, J.D. (1981) Logieal Construction of Systems, Van Nostrand
Reinhold, New York.

Yourdon, E.N. (1989) Modem Systems Analysis, Prentice-Hall, New
York.

FURTHER READING

Adeli, H. (Ed.) (1992) Heuristics, The Journal Of Knowledge
Engineering, lAKE, 5 (5).

www.manaraa.com

234 Bibliography

Bader, J., Edwards, J., HaITis-Jones, C. and Hannaford, D. (1988)
Practical engineering of knowledge-based systems. Information and
Software Technology, 30 (5).

Batarekh, A, Preece, AD., Bennett, A and Grogono P. (1991)
Specifying an expert system, Expert Systems With Applications, 2 (1),
Pergamon Press, Oxford.

Biggelaar, J.C.M. den (1992) An integrated Master's course in
Knowledge Engineering. Proceedings IAKE'92 Conference, lAKE,
New York.

Bleazard, G.B. (1976) Program Design Methods, NCC-Blackwell,
Manchester.

Born, G. (1988) Guidelines for Quality Assurance of Expert Systems,
Computing Services Association.

Buxton, J.N., Naur, P. and Randell, B. (Eds) (1969), Software
engineering techniques. Proceedings NATO conference (Rome, Italy,
1969), published by the Scientific Affairs Division, NATO, Brussels.

CCTA (1983) Central Government Mandatory Standard No. 18, Parts 1-
6, Central Computer and Te1ecommunications Agency, London,

Clanon, J. (1992) Deve10ping Knowledge Engineers at Digital Equipment
Corporation 1982 - 1992, Proceedings lAKE '92 Conference, lAKE,
New York.

Cupello, J.M. and Mishelevich D.J. (1988) Managing prototype
knowledge/expert system projects, computing practices.
Communications of the ACM, 31 (5).

Cutts, G. (1987) Structured Systems Analysis and Design Methodology,
Paradigm Press, London.

Dahl, O-J., Dijkstra, E.W. and Hoare, C.AR. (1972) Structured
Programming, Academic Press, New York,

Edwards, J.S. (1991) Building Knowledge Based Systems - Towards a
methodology, Pitman, London.

www.manaraa.com

Further reading 235

Eva, M. (1992) SSADM Version 4: A User's Guide, McGraw-Hill,
London.

Gomaa, H. (1986) Software development for real-time systems.
Communications OfThe ACM, 29 (7), P 657 - 668.

Gomey, D.J. and Coleman, K.G. (1991) Expert system development
standards, Expert Systems With Applications, 2, Pergammon, Oxford.

Hall, P.A.V. (Ed.) (1990) SE90: Proceedings Of Software Engineering
90, Cambrige, UK.

Harmon, P. and King, D. (1985) Expert Systems - ArtificialIntelligence
In Business, Wiley, Chichester.

Hekmatpour, S., and Ince, D., (1988) Software Prototyping, Formal
Methods and VDM, Addison-Wesley, Wokingham.

Hickman, F.R. (1989) The Pragmatic Application Of The KADS
Methodology, The Knowledge-Based Systems Centre Of Touche Ross
Management Consultants, London.

IEEE (1983) IEEE Standard Glossary of Software Engineering
Terminology, IEEE Standard 729-1983, IEEE, Washington, USA.

Ince, D. (1991) Software Quality and Reliability: Tools and Methods,
Chapman & Hall, London.

Jones, G.W. (1990) Software Engineering, Wiley, Chichester.

Macro, A. and Buxton, J. (1987) The Craft of Software Engineering,
Addison-Wesley, London.

Mair, P. (1987) Integrated project support environments. Electronics and
Power, 33 (5), 317-323.

Martin, J. and Finkelstein, C. (1981) Information Engineering, Savant
Research Studies, Carnforth.

Martin, J. (1982) Program Design Which is Probably Correct, Savant
Research Studies, Camforth.

www.manaraa.com

236 Bibliography

McGraw, K.L. and Harbison-Briggs, K. (1989) Knowledge Acquisition­
Principles and Guidelines, Prentice-Hall, New York.

Mellor, SJ. and Ward, P.T. (1986) Structured Design Jor Real-Time
Systems, Yourdon Press, New York,

Naur, P. and Randell, B. (Eds.) (1969), Software Engineering: Report on
a ConJerence Sponsored by the NATO Science Committee (Garmish,
Germany, October 7-11, 1968) published by Scientific Affairs
Division, NATO, Brussels.

Olphert, C.W., Poulson, D.F. and Powrie, S.E., (1990) ORDIT: the
development of tools to assist in organizational requirements
definition for information technology systems. ConJerence
Proceedings Computer, Man and Organization 11, May 9-11,
Nivelles, Belgium.

Porter, D. (1992) Towards The Common KADS Method, Touche Ross
Management Consultants, London

Price Waterhouse, (1988) Software Quality Standards: The Costs and
Benefits, Price Waterhouse Management Consultants, London,

Ratcliff, B. (1987) Software Engineering: Principles and Methods,
Blackwell, Oxford.

Regnier, L., Robert, J-M., Dalkir, K. (1992) How Do Knowledge
Engineers Work?, Proceedings lAKE '92 ConJerence, lAKE, New
York.

Smith, P.(1992) Knowledge Engineering Education In The UK - A
Perspective, Proceedings lAKE '92 ConJerence, lAKE, New York.

Spurr, K. (1989) CASE: a culture shock, Computer Bulletin, 1, (5),9-13.

Stamps, D. (1987) CASE: cranking out productivity, Datamation, July 1,
55-58.

Stevens, W.P., Myers, GJ. and Constantine, L. (1974) Structured design.
IBM Systems Journal, 13 (2), 115-139.

www.manaraa.com

Further reading 237

Thompson, J.B. and Edwards, H.M. (1990) Analysis and design methods
for computer based information systems - the impact of the post-1992
single European market, European Trade and Technology Conference
EIT'90, Sunderland, UK.

Thompson, J.B. (1989 and 1990) Structured Programming With Cobol
and JSP, Volumes 1 and 2, Chartwell Bratt, Bromley, UK.

Tuthill, G.S. and Levy S.T. (1991) Knowledge-Based Systems: A
Manager's Perspective, Tab Books, London.

Warnier, J.D. (1977) Logical Construction 0/ Programs, Van Nostrand
Reinhold, New York.

White, M. and Goldsmith, 1. (1990) Standards and Review Manual For
Certification In Knowledge Engineering: Handbook 0/ Theory and
Practice, Systemsware Corp, New York.

www.manaraa.com

Index

Aeereditation, 196, 197,200,201,203
Adaptability,21
Analysis, 11, 12, 16, 18,22,23,24,25,

33,34,36,57,58,59,62,66,68,
82,85,87,94, 111, 112, 121, 123,
126, 128, 133, 134,139, 146, 147,
148, 150, 151, 152, 153, 157, 160,
164,173,179,180,191,207,208,
213,229,230,231,233,234,236

Analyst, 12,56,87, 111, 112, 113,
123,128,221,224,232

AS/400, 220, 223
Automation, 14,21,22,43,90, 128,

135, 137, 140, 141, 145, 149, 155,
161, 162, 196,206,216,224
see also Code generation, automatie

Back end CASE, BI, 133, 150, 155,
231

BS5750, 196, 197

CASE (Computer Aided Software
Engineering), 10, 12,21,22,24,32,
33,34,35,36,39,42,45,46;47,
48,49,61,68,71,78,80,81,88,
92,93,94,97,99,100,101,103,
123, 128, 131, 132, 134, 135, 137,
140, 141, 143, 149, 151, 153, 156,
157, 158, 159, 161, 162, 166, 168,
169,170,176,178,180,182,185,
186,195,196,208,213,215,220

Certifieation, 196,201,202,203,208,
209,237

Change, management of, 73, 79, 89,
193

Clarity, 21, 128, 180, 190
COBOL, 5, 13,67,68,83,105,106,

123,124,146,158,161,218,219,
221,237

Code generation, automatie, 14,22,23,
46,92,94,105,155,222

Complexity, 6, 24, 78, 86, 92, 118,
120, 123, 134, 161, 168, 169, 174

Computer Integrated Manufaeturing
(CIM), 125, 126, 128, 147

Configuration management, 198, 199,
200,204

Constraints, 120, 126, 172
Consultants, 34, 64, 78, 84, 103, 109,

110,112,114,115,116,121,128,
129,174,175,212,222,235,236

Correetness,60, 177, 181
Culture gap, 168, 169, 170, 182, 185,

186

Data dietionary, 120, 146,218
Data flow diagrams, 59, 61, 82, 123,

128,202,226
Data modelling, 123, 148
Data proeessing, 24, 46, 106, 123, 146,

149,161,183,217,226
Databases, 121, 122, 161, 182,220
Deeision tree, 118
DeMareo, 58, 61, 229
Department of Trade and Industry

(DTI), 2, 29, 30, 31, 33, 40, 41, 49,
212,231

Design, 10, 12, 13, 14, 16, 18,22,23,
24,40,53,54,57,58,68,70,85,
87,97, 102, 105, 107, 112, 120,
121, 123, 127, 128, 134, 139, 146,
151,152,161,164,179,180,182,
185,192,197,202,204,205,206,
208,218,219,221,222,223,224,
225,226,236

Documentation, 15, 16,21,22,46,49,
66,67,68,71,81,120,128,157,
172,190,191,192,193,206,225

www.manaraa.com

DTI SOLUTIONS programme, 29, 32,
40,49,231

Effectiveness, 18,77, 104, 121, 123,
149,177,182,203

Efficiency,22,43,68, 123, 156, 177
Entity-relationship (E-R) modelling,

22,61,82,93,103,123,161,173
European quality standards (EN29ooo

series), 196, 197
Excelerator, 1,61,219,223

Fitness for purpose, 189
Formal methods, 57, 58, 60
Front end CASE, 23, 148, 155

Hardware, 12,31,43,48,62,63,73,
78,80,81,83,84,87,88,102,103,
105,119,123,124,130,141,171,
192,205,208,215,218,220,224

IB~,82, 123, 146, 147, 153, 160, 183,
208,220,222,236
see also AS/400; System 34; System
38

ICL,67, 153,208
IEEE, 229, 235
Implementation, , 11, 13, 14,33,49,

54,57,60,63,67,70,83,85,86,
94,99, 107, 108, 120, 121, 123,
125, 126, 134, 137, 138, 139, 141,
142, 143, 145, 146, 147, 149, 150,
173, 179, 180, 185, 190, 191, 196,
199,204,205,206,208,216,228,
233
see also Coding

Information engineering, 17, 18, 59,
61,152,153,202,230,235

Information strategy, 153, 174
Information technology (IT), 2, 29, 30,

32,33,36,37,39,59,62,63,64,
69,70,71,72,83,84,87,88,91,
95,96,101,102,103,104,108,
121, 123, 125, 126, 128, 130, 131,
143, 145, 149, 156, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177,

Index 239

179, 180, 182, 183, 185, 186, 187,
189, 193, 195, 197, 198,203,211,
217,220,226,227,231,232

Ingres,220
Integrated CASE (ICASE), 23, 24, 34,

131,141, 143, 153, 156, 157, 166,
173,181

International quality standards
(IS09ooo series), 196, 197, 198,
199,200,203,204,208,209,230

International Standards Organization,
188,189,196,197,198,200,230

Jackson Structured Programming (JSP)
56,57,59,61,218,219,220,226,
237

Juran,188,210,231

Knowledge acquisition, 110, 111, 112,
115,117,119,129,235

Knowledge engineering, 111, 112, 129,
233,234,236,237

Knowledge-based systems (KBS), 115,
117, 118

Lantz, 17,231
Lifecycle, 92

~wnframe,49,217,218,219,220

~wntwnability, 21,177,179,181
~cCall, 177, 231
~enu, 118
~ethodology, 16, 17, 18, 19,20,21,

49,66,85,87,120,126,128,191,
231,234,235

~odularity, 191

Networks, 67, 217, 218

Oakland, 188,210,231
Object-oriented methods, 58, 205
ORACLE, 120, 152, 173, 174, 186,

220
Organizational issues, 111, 116, 173,

182,186,190,218,227,236
PC,82, 123, 184,217,218,219

www.manaraa.com

240 Index

Planning, 56, 60, 63, 65, 79, 81, 107,
122, 123, 126, 127, 171, 179, 189,
190,191,192,199,208,225,230

Portability, 84,177,181
Price Waterhouse, 36, 39, 168, 169,

177,186,200,232,236
PRINCE, 62, 64, 66, 67, 231
Productivity, 216
Project management, 1,34,35,40,41,

57,64,67,68,69,72,108,120,
172,189,191,206,231

Prototyping, 12,85,87,93, 103, 120,
147,181,182,202,206,231,235

Pseudo-code, 218

Quality, 99, 224
Quality assurance (QA), 18,99, 192,

196,202,203

Rapid prototyping, 93, 181, 182
Real-time systems, 54, 56, 148,224,

235,236
Re-engineering, 61, 157, 167
Requirements, 12, 15, 16,24,39,59,

67,70,81,82,84,85,94, 105, 111,
112, 114, 120, 121, 122, 123, 125,
126, 127, 128, 144, 146, 147, 149,
152,161,165,173,191,192,199,
200,222,223,224,225,236

Re-usability, 177, 181
Reverse engineering, 30, 151, 153,

156, 157, 158, 159, 160, 161, 162,
163, 164, 166, 167

Software crisis, 6, 7, 16, 24, 54, 92,
168

Software engineering, 80, 105, 156,
215

SOURCEWRITER, 103, 123, 124

Specification, 12, 14,56,58,60, 82,
84,85,92,94,106,117,118,128,
175,191,192,197,199,205,222,
225,229

SSADM, 1, 17, 18,49,56,57,59,60,
61,62,66,68,72,85,86,140,151,
152,196,202,208,209,229,231,
234

STePS,17,6O,88,230
Stobart, 21, 42,46, 50,213,215,233
Structure charts, 22, 59, 61
SynonJ2, 220, 221, 222, 223
System 34, 104, 105
System 38, 104, 105

Telon, 141, 155
Testing, 14,22,25,46,60,86,87, 162,

179, 191, 192, 197,204,206,218,
219,221,224

The TideIT initiative, 30, 196, 200,
203,204,231,233

Timeliness,64, 180
Top-down design, 126, 128, 171
Training, 7, 15,34,48,62,63,64,67,

69,75,76,80,81,85,87,88,90,
96, 106, 116, 119, 126, 130, 134,
139,141,148,182,204,205,208,
209,211,212,219,220,221,223,
225,226,227

Usability, 21,177,181
User interface, 12,22

Validation, 14,49,57, 103, 162, 172,
199

Yourdon, 13,25,49,56,58,61, 120,
202,225,226,229,233,236

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200058000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200061006e0064002000500069007400530074006f00700020005300650072007600650072002000200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

