Managing
Software

Engineering

CASE studies and solutions

Alan C. Gillies and Peter Smith

®
l i SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

Managing Software Engineering

Managing Software
Engineering

CASE studies and solutions

Alan C. Gillies
and

Peter Smith

m SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

ISBN 978-0-412-56550-2 ISBN 978-1-4899-7188-3 (eBook)
DOI 10.1007/978-1-4899-7188-3

© Alan C. Gillies and Peter Smith 1994
Originally published by Chapman & Hall in 1994

First edition 1994

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the UK Copyright Designs and Patents
Act, 1988, this publication may not be reproduced, stored, or transmitted, in
any form or by any means, without the prior permission in writing of the
publishers, or in the case of reprographic reproduction only in accordance with
the terms of the licences issued by the Copyright Licensing Agency in the UK,
or in accordance with the terms of licences issued by the appropriate
Reproduction Rights Organization outside the UK. Enquiries concerning
reproduction outside the terms stated here should be sent to the publishers at the
London address printed on this page.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

o Printed on permanent acid-free text paper, manufactured in
accordance with ANSI/NISO Z739.48-1992 and ANSI/NISO Z39.48-1984
(Permanence of Paper).

Contents

Contents

1 Introduction

1.1 What the book is about
1.2 What’s in the book

PART ONE: THE STORY SO FAR

2 A brief history of software

2.1 The dark ages

2.2 The engineering approach

2.3 The advent of software engineering
2.4 The software life cycle

2.5 The role of methodology

2.6 The role of CASE

2.7 Summary

Further reading

PART TWO: WHERE ARE WE NOW?

3 The DTI SOLUTIONS Programme (1989-91)
John A. Kirkham

3.1 Introduction

3.2 Strategy

3.3 The take up of SE methods and CASE tools

3.4 Analysis of ‘achievements with software engineering’ events*
3.5 Analysis of ‘IT for competitive advantage’ events

3.6 Critical success factors '

3.7 Conclusions

Acknowledgements

Further information

29
29
33
34
36
39
41
41
41

vi Contents

4 CASE usage in the UK, 1991

4.1 The uptake of CASE

4.2 Problems and difficulties
4.3 Conclusions

4.4 Summary

Further reading

5 Methods come before tools

5.1 Introduction

5.2 The importance of methods
5.3 Case studies

5.4 Summary

Further reading

6 Evolutionary not revolutionary change

6.1 Introduction

6.2 Management of change
6.3 Case studies

6.4 Summary

Further reading

7 People matter

7.1 The stakeholders
7.2 Case studies

7.3 Summary
Further reading

8 Consultants can help

8.1 Consultants: who needs them?
8.2 The role of the consultant

8.3 Case studies

8.4 Summary

Further reading

9 The long term view

9.1 The need for the long term view
9.2 Reducing the time to benefits
9.3 Case study

9.4 Summary

Further reading

42

42
46
48
49
50

53

53
53
62
71
72

73

73
73
81
88
89

90

90
101
107
108

109

109
110
115
128
129

130

130
137
143
149
150

Contents

10 The problem with existing systems

10.1 Existing systems
10.2 Reverse engineering
10.3 Case study

10.4 Summary

Further reading

11 Serving the business needs

11.1 The IT culture gap

11.2 The IT strategy

11.3 Case and the IT strategy
11.4 Providing a better service
11.5 Case study

11.6 Summary

Further reading

12 CASE is just part of the process

12.1 CASE and the process of producing software

12.2 The use of continuous improvement techniques in software
12.3 The role of standards: ISO9000 and TickIT

12.4 Case studies

12.5 Summary

Further reading

13 When it works

13.1 Introduction

13.2 Reasons for success
13.3 Problems

13.4 Case studies

13.5 Summary

14 Final thoughts

Bibliography

References
Further reading

Index

Vil

151

151
157
164
166
167

168

168
171
173
177
182
185
186

187

187
188
196
204
209
210

211

211
211
212
216
226

228

229

229
233

238

Introduction

1.1 WHAT THE BOOK IS ABOUT

This book is about building computer software. The aim of the book is to
highlight the lessons from previous experience. Thus, you will not find
detailed descriptions of specific methods and tools such as SSADM or
Excelerator here. Instead, the book will describe other people’s
experiences in software development and try to distil some of the
knowledge that they have gained.

The main hypothesis underpinning the text is that although software
development methods and supporting tools have become more technically
sophisticated, the management knowledge required has failed to keep
pace. Further, technically sophisticated tools and proprietary
‘methodologies’ have been presented by suppliers as substitutes for
sound project management practice.

Thus, the book will emphasize the importance of managing the
software development process and suggest that modern methods and
tools place a greater emphasis upon sound management practice rather
than less.

1.2 WHAT’S IN THE BOOK

The book is arranged as a chronological tale from the origins of software
engineering up to the present and looking to the future. However, the
book is divided in three sections to assist the reader in finding the
material that they require:

2 Introduction

e Part One deals with the historical development of software
engineering. It describes the development of the principal ideas in
software engineering and outlines how we have arrived at the current
situation.

» Part Two describes the state of Computer Aided Software Engineering
(CASE) in the UK up to 1991, based upon two major studies. The first
is the DTI Solutions programme organized by Salford University
Business Services Limited. The aim of this programme was to raise
the awareness of CASE methods and tools amongst small and medium
sized companies. In the process, the SOLUTIONS team collected a
valuable collection of experiences from companies who have
implemented software methods and tools. Many of these are presented
in this text as case studies illustrating the later chapters of the book.
The report on this study has been kindly contributed by John Kirkham
of the IT Institute, Salford, who was director of the Solutions
programme. The second study was a survey of the uptake of CASE in
the UK carried out by the University of Sunderland. The survey
highlighted that many companies had experienced problems in making
practical use of the methods and tools.

» Part Three draws upon the findings of the two studies. It attempts to
draw out the lessons to be learnt from the experiences of the
companies contacted by the two studies. Each chapter focuses upon a
specific aspect of developing software and is based upon a central
principle.

The book is intended for a broad audience since the authors believe that
both technical and management personnel must recognize the need for
managing the software process. However, the organization into distinct
parts is intended to cater for different readers’ needs.

For the student, at undergraduate or postgraduate level, it is suggested
that they will benefit from reading the whole text, since Part One
provides a foundation for Part Two, and Part Three is based upon the
findings of the studies in Part Two.

However, technical people already familiar with the history of
software development may wish to start reading at Part Two. Those
wishing to find out more about managing the software process or whether
other people have experienced the same problem that they face may
confine their attentions to Part Three.

PART ONE

THE STORY SO FAR

A brief history of software

2.1 THE DARK AGES

In the early days of computers, programming was considered to be
something of a black art, performed by mad scientists who were clever
enough (and probably mad enough) to program these strange beasts of
technology known as computers. These scientists sat for endless hours
ploughing through strange computer codes known as programs which
were, undoubtedly, incomprehensible to anyone but themselves. These
early programmers did not follow any methods or rules when
constructing their programs; rather they applied their high intellects to the
problem in a way that lesser mortals could not be expected to achieve.

The truth of the matter was that programming was difficult in those
times, not least because of the fact that, in the very early days, no real
programming languages existed. However, languages such as FORTRAN
and COBOL soon did emerge, but they were not accompanied by any
disciplined or formalized approaches to software development. In
addition, there were no effective tools available to help the programmer
in his/her task.

Thus programs tended to be thrown together in a haphazard manner,
with no real attention being paid to trying to structure them. The prime
objective in those days was to produce a program that was efficient and
could be squeezed into as small an amount of computer storage as
possible, as at that time the cost of computer power was quite prohibitive.

This sort of approach seemed to work quite well, without causing too
many disasters for a number of years. As long as the mad scientists got
the right results (or rather, a set of results that appeared to be right) they
remained happy, and convinced that their program was correct. These
happy days were not, however, to last for long.

Soon managers, computer users and all sorts of people were
demanding, and indeed expecting, @ lot more from the computer. They

6 A brief history of software

had had a taste of what the computer could do for them and wanted more.
At the same time, the programmers and their bosses were becoming more
imaginative and adventurous. Thus much more complex and large pieces
of software were being developed. Large operating systems for the new
generations of computers were being developed. However, no-one really
understood the best way to approach the development of such complex
software products. Nor did they have any tools that could help them put
together these pieces of software. As program size grew, so complexity
increased and the need to manage that complexity increased. In the
absence of appropriate tools and methods to manage complexity, the
number of errors began to accelerate and the cost of fixing those errors,
euphemistically referred to as ‘maintenance’, increased out of control.
This was the point at which real problems began to arise.

» Software projects were taking a lot longer to finish than originally
envisaged.

* Software was costing a lot more to develop than initially imagined.

» Software was being delivered to the customer only to fail (i.e. produce
incorrect resuits).

» Software projects were being abandoned because of disastrous
failures.

factor
,/ — - — Cost
/
, Errors
/
, — — — Complexity
. ’ - /
e e — Size
. e -
LT
time

Fig. 2.1 The software crisis.

The engineering approach 7

In summary, software failures were costing an unacceptable amount
of money, and it was this that forced the software development
community to rethink their working practices. This became known as the
‘software crisis’. The proposed solution was to borrow ideas about
systematic development from another discipline, that of engineering.

2.2 THE ENGINEERING APPROACH

The term ‘software engineering’ was first coined in the late 1960s for the
application of ideas on systematic development from engineering
disciplines. Let us consider first a problem from civil engineering.

Consider a gang of labourers who have had no training in bricklaying,
plumbing, electrical work, or any of the activities needed to build a
house. This gang of labourers have, however, managed to fumble their
way through building a few small houses. The houses don’t look great
and may not be very comfortable: but at least they don’t fall down and
you can live in them. The leader of the gang is confident that they can
build houses and feels that the time is right to attempt a more ambitious
project.

On Monday morning, without any warning, the leader informs the
gang that they are going to build a skyscraper. The gang start piling bricks
on top of each other, without any real thought about what they are doing.
Soon they are running into real difficulties, as the skyscraper begins to
wobble about, and ultimately it crashes to the ground!

This is, of course, an example of how not to go about constructing a
building (or indeed anything else). A true engineer (because it is
engineering that we are discussing) would surely approach the problem in
a much more systematic and professional manner. They would use
methods, techniques, standards and tools to aid in the production process.

The type of disaster described above is, however, the very situation
which had arisen in the software industry. A number of largely untrained
(or, at the best, self-trained) programmers would attempt to throw
together a very large and complex piece of software without following
any rules or guidelines, or attempting to apply any real methods. They
would not plan out their work to any great extent, nor would they make
any real estimate of the consequences of their actions. What is being
described is, of course, a recipe for disaster — and that is exactly what
happened in a large number of instances. It is this scenario that leads us
to the emergence of the concept of software engineering.

8 A brief history of software

2.3 THE ADVENT OF SOFTWARE ENGINEERING

The purpose of software engineering is clear. It may be defined as:

‘The application of traditional engineering approaches to the
development of software’.

In practice, the engineering approach is characterized principally by
the application of a systematic method to the problem in hand. A general
engineering method which all engineers might recognize would include:

¢ establishment of clear goals;

* a clear plan, breaking down the overall problem into a set of simpler
tasks;

* use of a systematic method to control and manage the project;
* use of suitable tools to support the process;
* evaluation and monitoring of the process;

* testing of the materials used and the product.

Within the overall sphere of engineering there are many distinct
disciplines, such as civil, mechanical, electrical and chemical. What they
share is an overall systematic approach to problems in the same way that
a chemist, biologist or physicist would recognize that they have scientific
method in common.

However, the difference between most engineering disciplines is
small when compared to the differences between physical engineering
disciplines and software engineering.

The crucial characteristic of software is its intangibility. You cannot
hit software with a hammer. More importantly, perhaps, you cannot
measure it with a ruler or micrometer or adjust it with a screwdriver.
Much of engineering theory and practice depends upon measurement.
Software measures are at best very crude and much less objective than
their counterparts in other engineering disciplines:

The advent of software engineering 9

Fig. 2.2 Software cannot easily be measured.

Nevertheless, it is still a product; an item which humans make. The
idea behind software engineering is, then, that software should be
engineered, in as professional a manner as a civil engineer might
construct a bridge or an automotive engineer might construct a car.

In particular, software engineering implies the use of tools, techniques
and methods for the production of quality software. That is, the software
engineer must approach the construction of their product, software, in a
professional manner. Their work should, therefore, involve adherence to
standards, quality control procedures and professional practices. Software
production should be carefully managed from the highest level with each

10 A brief history of software

software engineer clear of their own responsibilities and taking a pride in
their work.

All of this is, of course, a very fine ideal. When these ideas were
proposed they certainly seemed a long way from reality. Everyone agreed
that it would be wonderful if software engineers could adhere to such
practices; few people had the vision to imagine how this might be
achieved.

It was difficult (and still is) to imagine or predict the answers to the
following questions:

* How do you measure the quality of software?
* How can you provide tools to aid in software construction?
* How can you plan complex software projects?

* How can you devise methods to aid in software design?

The past two decades have seen much research effort (and money) go
into answering the above, and other, important questions in the field of
software engineering. We have undoubtedly come a long way in that
period and many methods, tools and techniques have arisen. CASE tools
are one very important part of this scenario.

Some of these methods and tools are now in wide usage in business
and commerce; others are still very much at the research stage. One thing
is, however, without question — software development has been raised
from what was a somewhat haphazard cottage industry into a professional
discipline. Whether it is worthy of the title ‘Software Engineering’ is still
a matter for some debate; but the term is now in common usage.

The concept of professionalism is at the very heart of software
engineering, and CASE tools must, if they do anything useful at all, raise
the level of professionalism in the software development community. In
the UK, members of computing’s professional body can now apply for
chartered status, which signifies their recognition as a professional
engineer. Some people, including traditional engineers in other
disciplines, would, however, argue that computing is still too immature a
discipline to warrant being termed ‘engineering’ and that there are still
too few methods, tools, techniques and quality assurance procedures
being applied in industry and commerce.

The process of software engineering is dealt with comprehensively in
a text by Sommerville (1989).

The software life cycle 11

2.4 THE SOFTWARE LIFE CYCLE

At the heart of any engineering process is a systematic procedure
consisting of a number of stages from initial conception through to the
final finished article. These stages are commonly termed the software life
cycle. The primary role of CASE tools is to support and automate all or
part of the life cycle. The stages in the software life cycle are:

* Analysis

* Design

* Implementation (Coding)
* Testing

* Installation

¢ Maintenance.

Each of these stages must be managed, documented and validated.
Each stage of the software life cycle will be considered in more detail
below.

2.4.1 Analysis

This stage consists of analysing the user’s problems, and is one of the

most difficult, creative and intuitive stages in the software development

process. It is also one of the most difficult areas to automate and, hence,

is less well supported by current tools than later stages of the life cycle.
The questions to be answered at this stage may include:

* What is the real problem to be solved?

* What do the potential users of the software need?
¢ What computer and programs are needed?

* What data is to be used?

e What results are to be presented?

12 A brief history of software

* How are they to be presented?

This stage will involve extensive discussions and consultations with
the people who are going to use the software in the future. The best
which current tools can do is to support certain aspects of this process, by
helping the systems analyst to produce diagrammatic models of the
systems and to check the consistency of these models as they are
successively refined. The output of this stage will be a detailed
specification that will describe exactly:

¢ the inputs and outputs of the system;
 the hardware and software to be used;
* the functions to be performed by the system;

* the form and structure of the user interface (i.e. how the system is to
interact with its users).

The ideal tool would be able to generate automatically such system
elements. One of the most useful applications of tools in support of the
analysis process is through the use of prototyping to allow users to see the
implications of their specific requirements.

Methods and tools have been developed by a number of authors to
assist in this process, and the reader is referred to Chapters 3 to 6 of
Sommerville’s (1989) book for further details.

2.4.2 Design

This stage entails the design of the software. Here the software engineers
will decide how many programs need to be written and describe their
overall structure.

The major concept underpinning methods and tools for design is
structuredness. The idea behind structuredness is to break down the
overall problem into a set of simpler tasks. In so doing the process
imposes organization onto the problem.

The inputs to this stage of development are the requirements
described in the analysis phase. The purpose of this stage is to formalize
the requirements into a design, usually expressed as a hierarchical
structure of some form:

The software lifecycle 13

Informal
requirements
from analysis

Semi-formalized

Formal design specification

Fig. 2.3 The design process (schematic).

The output from this stage may be expressed in the form of diagrams
or text, generally known as a design description language. Increasingly
the influence of graphically based tools is switching the emphasis to
diagram-based techniques.

The classic methods of structured design were pioneered by authors
such as Constantine and Yourdon (1979) and Jackson (1975, 1983).

2.4.3 Implementation

The implementation (or coding) stage involves taking the software design
and converting it into the instructions of a programming language,
typically in the past this would have been COBOL for business
applications and FORTRAN for scientific applications.

However, the growth of structured methods has led to the growth of
languages which encourage structured programming such as Pascal and
more significantly C and ADA.

In business applications, the use of so-called fourth generation
languages (4GL) has become increasingly popular, in order to increase

14 A brief history of software

productivity and ease interaction with a database system. Some of these
are closely linked to tools to support the rest of the development process
such as ORACLE’s proprietary 4GL and CASE tool.

The future of implementation will depend increasingly upon the
automatic generation of code from design specification. Coding is not
essentially a creative process and the most important feature is to
consistently mirror the design specification. Thus this is a task well suited
to automation.

However, the current generation of tools have limitations and many
tools offer only partial code generation. Jackson (1983) describes the
principles of structured programming. There is little published literature
regarding automatic code generation as yet, but this topic is discussed in
Part Three.

2.4.4 Testing

Any quality product is only of high quality if it has been subject to
rigorous quality assurance procedures. This entails testing the software as
rigorously as possible to ensure that it performs according to
specification. As well as testing the product at this late stage, checks and
reviews should be built into the software life cycle at every stage. CASE
tools can help in this process, in that they can check that as the system is
being designed the models that are being developed are consistent with
previous views of the system and its domain.

Boehm (1981) highlights the rising cost of error detection throughout
the software life cycle. This is illustrated in Fig. 2.4.

Thus, testing and validation must be carried out throughout the
software life cycle to detect as many errors as possible at an early stage.
CASE tools can assist by providing consistency checks at all stages of the
life cycle. A classic text on software testing is provided by Myers (1979).

2.4.5 Installation

Once the software has been fully tested it should be installed on the
user’s computer. This can be a relatively simple process for small pieces
of software, but may be much more complicated for larger, more complex
systems. It may also involve training the users of the software exactly
how to operate it. The software should also be accompanied by manuals
to tell the users how to operate it.

The software lifecycle 15

Log (cost)

Analysis Design Coding Testing Operation

Fig. 2.4 The cost of fixing errors (after Boehm,1981).

In theory, CASE tools can help in the generation of both user and technical
documentation. In practice, many tools generate much material relevant to
documentation in an unhelpful form.

2.4.6 Maintenance

Now that the software has been installed, it must be maintained. This
entails correcting any bugs that the users may subsequently find in the
software and ensuring that it continues to work correctly in the future.

This may also involve updating the software to meet new user
requirements and changes in the environment in which the software
operates. Although CASE cannot help directly in the maintenance
process, the use of CASE in software development can help produce
more maintainable code.

Since it is alleged that most maintenance arises from badly designed
software that does not meet users’ requirements effectively, the use of
better analysis and design methods and tools should reduce the

ol L) EJLIH

16 A brief history of software

This is the reason why CASE methods and tools are presented as a
solution to the software crisis. If they cannot do this, then they are being
sold to organizations under false pretences.

2.4.7 Continuous activities

Throughout the software life cycle it is necessary to ensure that:

 the software development process is tightly managed and controlled;
* each stage of the process is carefully documented;

e everything produced is validated, including preliminary designs,
documents, etc.

The use of a systematic method will help to ensure that these tasks are
carried out consistently and effectively. A CASE tool can help to increase
productivity by assisting in the production of documentation and
diagrams.

However, one of the greatest potential benefits arises from the sharing
of data between the different phases of development. A CASE tool uses a
central repository to store data and builds the data models required at
each stage from those developed in the previous stage.

2.5 THE ROLE OF METHODOLOGY

Often, the systematic collection of methods is gathered together into an
overall framework known as a ‘methodology’. Strictly, methodology is
the study of method. However, in software terminology, the word has
come to mean a systematic framework for software development defining
a series of stages within the software development life cycle and methods
within each stage to carry out the required tasks. Thus, within the
software community, a more realistic definition might be:

‘A methodology is a framework for the systematic organization of a
collection of methods.’

These methodologies may be proprietary to a particular company, e.g.
Information Engineering from Texas Instruments, Government

The role of methodology 17

sponsored, e.g. SSADM, or derived from academic study and within the
public domain.

Tools to assist in software development, known as Computer Aided
Software Engineering (CASE) tools, may be linked to a specific
methodology, e.g. the Information Engineering Facility (IEF) CASE tool
automates the Information Engineering Methodology (IEM), or may
automate generic methods found in many methodologies.

Software engineering was introduced to try to formalize the
development of software using ideas from other engineering disciplines.
The idea that has been pre-eminent ever since is the idea of
structuredness. The concept of structuredness is simply about breaking
down a large problem which cannot be dealt with easily, into a series of
smaller problems which can. The development of systematic procedures
to produce structured code, which became known as ‘methodologies’,
was the first widespread attempt to take account of quality issues during
software development.

2.5.1 What is a methodology?

Lantz (1989) suggests that a methodology may be characterized by a
number of features:

o It can be taught. A methodology involves a collection of methods.
These may be ordered as a sequence of steps and the nature and order
of each step may be taught.

« It can be scheduled. The time and resources required to complete each
stage may be estimated and a project schedule drawn up accordingly.

o It can be measured. This schedule may be used to measure progress of
the plan.

o It can be compared. The use of the methodology within a specific
project may be compared with its use in another project, or with the
use of another methodology.

« It can be modified. Methodologies can be improved in the light of
experience. For example, SSADM (Structured Systems Analysis and
Design Methodology) is now in its fourth incarnation since its
adoptionras'a UK -Government standard in 1981.

18 A brief history of software

Methodologies may be developed for all or part of the software
development process. Information systems development (ISD)
methodologies such as IEM (Information Engineering Methodology) are
concerned with the whole development process. SSADM is only directly
applicable to the design and analysis phases of the process.

In order to see how a methodology is applied, consider a methodology
for washing up. Washing up is a good application for a structured
methodology as it is often carried out in a haphazard fashion.

A ‘best practice’ approach might be considered in 13 phases,
described in Table 2.1 and illustrated in Fig. 2.5. This provides a rigorous
and systematic approach to washing up. Once a clear procedure is in
place, then we can put into operation a series of reviews for quality
assurance. The process of washing up then becomes a systematic
sequential process.

At each stage, monitoring and evaluation are required to check the
effectiveness of the procedure. For example, in our washing up example,
the state of the washing up water is a critical factor in the success of each
stage. Therefore during each of the washing phases, ongoing monitoring
is required. Similarly, the amount and effectiveness of detergent is
another critical factor in the effectiveness of the overall process.

Where washing up and drying are carried out by two different people,
this allows for a natural QA process to be incorporated, since the drier
may reject items that are unsatisfactorily washed. However, the process
should be designed to minimize the number of items failing to meet the
required standard.

The role of methodology 19

Table 2.1 Summary of washing up methodology

Procedure Description
Sort Washing Up Into This process sorts the washing up to be done into
Categories categories of increasing dirtiness: glasses, cutlery,

Clean Surfaces

Rinse Dishes

Wash Glasses

Wash Cutlery

Wash Crockery

Wash Pots & Pans

Dry Glasses, Dry Cutlery,
Dry Crockery, Dry Pots &
Pans

Put Away Dishes

Clean Up Sink Area &
Bowl

crockery, pots and pans used for cooking. This
minimizes transfer of dirt and the need for changes of
water. An inspection is required to ensure that all dishes
are sorted correctly.

In order to ensure clean dishes are not placed upon dirty
surfaces leading to re-soiling, the surface on which clean
dishes are to be placed should be inspected.

The soiled dishes should be rinsed to remove excessive
dirt. This should be subject to inspection, to ensure that
it has been carried out to the required standard.

The glasses should be washed first, in order to ensure
maximum cleanliness. All clean glasses should be
inspected to ensure that they are cleaned satisfactorily.

The cutlery should be washed next, in order to maximize
cleanliness. All clean cutlery should be inspected to
ensure that it has been cleaned satisfactorily.

After the cutlery, the crockery should be washed and
inspected for cleanliness.

Finally, the dirtiest items should be washed. After
washing they should be inspected.

The drying shouid be carried out in the same order. Each
phase is followed by an inspection.

The clean dishes should all be put away and this should
be checked.

Finally, the area used, the sink, draining boards and
bowl should be washed down and inspected. A final
report on the state in which the area has been left is

required to complete the process.

20 A brief history of software

Sort Washing Up

T

L

| Clean Surfaces

Rinse Dishes

Wash Glasses

Wash Cutlery

Wash Crockery

Wash Pots & Pans |

Dry Glasses

Dry Cutlery

fi

Dry Crockery

Dry Pots & Pans |

j

Put Away

Clean Sink & Bowl

Fig. 2.5 A methodology for washing up.

The role of CASE 21

A good methodology for software development has a number of
characteristics:

* Usability. It should be easy to use and have good support provided by
the vendor, since this is just as important to the long-term usability of
the product.

» Integrity. A methodology should provide coverage of the whole life
cycle to ensure integrity throughout the process.

* Adaptability to local needs. Methodologies are necessarily restrictive
if they are to encourage good practice, but they should also be
adaptable to the needs of a particular environment.

* Clarity. Documentation is a critical and often neglected area. Good
documentation can be facilitated by the methodology and partly
generated by associated tools. The methodology itself should be
jargon-free and produce understandable output.

* Automation. Increasingly, methodologies are becoming automated
through the use of tools. A good methodology should lend itself to
automation.

The methodology is the basis for any CASE tool. Without a
systematic and appropriate procedure, automation will not solve any of
the software developers’ problems.

2.6 THE ROLE OF CASE

Recent years have seen the advent of many software tools (Stobart,
Thompson and Smith, 1991a) to support the software development
process. Such tools are now given the generic name CASE (Computer
Aided Software Engineering). The use of these tools can not only
enhance productivity, by relieving the software engineer of some of the
more tedious tasks in software development, but it will also ensure
adherence to standards and, ultimately, increase quality.

Indeed, CASE tools have been promoted as one of the solutions that
will counter the problems of poor software quality and inadequate

22 A brief history of software

documentation. The successful use of CASE should also enhance and
improve software usability and maintainability.

CASE is the automation of existing software engineering methods and
practices with the goal of improving both the quality of the product and
the efficiency of the software developers. Such automation is new within
the software engineering community; however, it has been applied for
some time in fields such as computer-aided design (CAD) and computer-
aided management (CAM), among others.

The automation of the software development life cycle requires the
creation of a set of tools that will assist in the production of high quality
software; ideally by automating every stage in the software development
process. In practice, however, CASE tools provide varying levels of
support throughout the software life cycle. That is, there is great diversity
in tool functionality, design and in the user interfaces which CASE tools
present to the software engineer. This situation has resulted in
considerable confusion surrounding the true definition of what exactly
constitutes a CASE tool.

CASE tools are now available to support and automate many stages of
software development including:

* generation of structure charts;

* automatic generation of program code from a structure chart;
+ automatic generation of documentation;

* consistency checks;

* screen design; and

* testing and debugging.

Those CASE tools that automate analysis and design techniques such
as data flow diagramming, logical data structures and entity-relationship
modelling are very different from those which automate the later stages
of software production such as code generation by structure charts and
the reuse of existing modules of code. Such differences have resulted in
the definition of various categories of CASE tool, as summarized in
Table 2.2 and Fig. 2.6:

Table 2.2 Types of CASE tool

The role of CASE 23

Scope

Description Also known as
upper-CASE tools front end
middle-CASE tools

lower-CASE tools back end
integrated CASE tool

automate the earlier analysis-based
stages of the software life cycle

automate the design-related stages of
software production

focus upon actual code generation

automate the complete life cycle

The Software Lifecycle

|| system& | [Operati
R ts peration
SqTeTes software || Coding || Testing &
analysis design maintenance

Integrated CASE tools (ICASE)

g_e.g. Information Engineering Facilit

Upper/Lower CASE tools

Upper CASE/Front end Lower CASE/Back end

e.g. Excelerator
Upper/Middle/Lower CASE tools

Upper CAS Middle CASE

_?5_9.9. Telon

Lower CASE/Back end

e.g. Telon

Fig. 2.6 Types of CASE tool.

24 A brief history of software

Thus, some tools facilitate analysis, some design and some both,
whilst others are concerned with generating code. However, the latest
generation of CASE tools are moving more and more towards the idea of
the integrated CASE tool that attempts to automate (or at least offer
support to) every stage of the software development life cycle. Some such
tools (or sets of tools) are now emerging. However, the majority of
current CASE technology focuses upon performing data consistency and
conformance checks and automating the process of managing and
documenting software production. This form of support enables software
engineers to concentrate more on the creative design aspects of software
fabrication.

Although there is currently little standardization in the CASE market,
and the take-up of CASE technology in industry still remains somewhat
low, it is still seen by many as an area of expansion for the future. The
use of CASE tools may, at the very least, be expected to lead to increases
in development productivity and the generation of quality software that
conforms more closely to requirements.

Traditionally, CASE tools have focused around the data processing
area, with a wide selection of CASE technology being available to help in
the development of commercial software systems. In recent years,
however, tools have become available for many other application areas.

This is also an area that is likely to grow and expand in the coming
years.

2.7 SUMMARY

The main points of this chapter were:

* At a point in the historical development of computer systems, the
degree of complexity made existing ad hoc methods unacceptable.
This was known as the ‘software crisis’.

» The proposed solution to the crisis was the application of engineering
ideas from other disciplines to software development. This became
known as ‘software engineering’.

Further reading 25

» The key ideas borrowed from engineering were establishment of clear
goals, a clear plan, breaking down the overall problem into a set of
simpler tasks, use of a systematic method to control and manage the
project, use of suitable tools to support the process, evaluation and
monitoring , testing.

* The resulting methods were known as ‘structured methods’ since they
broke the problem down to smaller tasks.

* The process was known as the ‘software life cycle’ and the collection
of methods required to carried it out became known as a
‘methodology’.

e CASE tools have been designed to support and automate these
‘methodologies’.

FURTHER READING
Sommerville, I. (1989) Software Engineering, 3" edn, Addison-Wesley

This book provides a comprehensive treatment of software
engineering. The references provided here refer to the 3 edition,
although a 4" edition has recently been published.

Constantine, L.L. and Yourdon, E. (1979) Structured Design, Prentice-
Hall, New York.

Jackson, M.A. (1975) Principles of Program Design, Academic Press,
London.

Jackson, M.A. (1983) System Development, Prentice-Hall, New York.

Yourdon, E. (1975) Techniques of Program Structure and Design,
Prentice-Hall, New York.

Yourdon, E. (1981) Modern Systems_ Analysis. Prentice-Hall, New York.

These books are classic tests from the development of structured
methods for the development of software.

26 A brief history of software

Fisher, A. (1991) CASE : Tools for Software Development, Wiley, New
York.

This text provides a gentle introduction to CASE tools combining
details of specific methods and tools with a readable style.

Gillies, A.C. (1992) Software Quality: Theory and management,
Chapman & Hall, London.

Chapters 6 and 10 discuss the relationship between CASE tools and
software quality.

PART TWO

WHERE ARE WE NOW?

The DTI SOLUTIONS Programme
(1989-91)

John A. Kirkham

3.1 INTRODUCTION

The SOLUTIONS programme was funded by the UK Department of
Trade and Industry (DTI) to raise the awareness of the business
community, particularly small to medium sized companies (SMEs), as to
the benefits of using software engineering methods and Computer Aided
Software Engineering (CASE) tools for developing Information Systems
(IS). The core component in the programme’s strategy was the promotion
of ‘best practices’ derived from the experiences of other businesses. This
was achieved by adopting a three-pronged strategy:

* media coverage to create awareness;

* quarterly newsletters and an audio-visual presentation to provide
supporting information and ongoing commitment; and

¢ seminars and workshops to ‘inform and educate’ and to encourage
action.

3.2 STRATEGY

The strategy identified two distinct target audiences and tailored its
messages accordingly.

The first target was the ‘purse-holder and decision maker’ — senior
managers whose influence and commitment would be needed to make an
informationstechnologys(IT)sprojectisuccessful. These key messages were

30 The DTI SOLUTIONS programme (1989-91)

slanted to the business benefits of having a cost effective, properly
developed IT plan.

The second target was the IT professional: those who had the
responsibility for ‘selling’ IT internally and guaranteeing its credibility.
The key message was not just technical excellence but also the vital
importance of developing it as a profit-making component in the business
plan.

Fifty events (seminars, breakfast meetings and technical workshops)
were held throughout the country, attracting up to 100 participants on
occasion. Some specialist events attracted even greater participation; for
example, the sessions on real time systems and reverse engineering had
171 and 182 attendees respectively. The technical event for the IT
professional was called ‘Achievements with Software Engineering’ and
the management event was called ‘IT for Competitive Advantage’. The
technical event lasted from 11:00 to 15:30 hours and had a common
introduction and conclusion between which three to four demonstrators,
from a pool of twenty, gave presentations. The management event, called
a breakfast seminar, lasted from 08:00 to 09:00 and was followed by a
full English breakfast.

The format was a common introduction, an audio-visual presentation
followed by conclusion and discussion. A demonstrator in the breakfast
seminar usually presented in the technical event. The demonstrators
talked not only about the advantages but also the problems they had
experienced and how they had dealt with them. Other presentations were
given by experts recruited from other initiatives being run by the DTI
such as open systems and quality (TickIT).

The demonstrators played a crucial role in the success of the
programme. They were found in one of three ways:

* The quickest and most effective way was through personal contacts.
This enabled the programme to get off the ground quickly with people
who were known and trusted. This provided about one third of the
demonstrators.

* Vendors of methods and tools were contacted to see if they had any
clients who would be willing to talk at an event. There were two
methods of contact: a seminar was held in London, at which 40
vendors attended, and a letter was sent to any vendors who had not
attended the London meeting (100 letters in all). This avenue provided
another third of the demonstrators.

Strategy 31

* The final approach was via the newsletter and those who attended the
event. These people saw an opportunity to further the image of their
company and themselves by speaking at SOLUTIONS events.

Once the contact had been made, one of the SOLUTIONS team was
assigned to that potential demonstrator. The demonstrator either visited or
discussions were conducted over the telephone and a two page summary
produced. This was then discussed with other summaries at the monthly
meeting with the DTI and suggestions made as to the content of the
presentation. If the demonstrator was suitable, then they were added to
the list.

Typically demonstrators were required who could relate their
experiences to a wide spread of medium size enterprise using a variety of
methods and tools. The type of software and hardware platforms was not
important as the key was raising awareness rather than giving detailed
technical advice. If the demonstrators satisfied these criteria and were
thought to be good presenters, then they were accepted.

Some demonstrators were not suitable or found that their employers
would not let them spend the time away from their work. The time spent
on these was not wasted as their experiences appeared in the newsletter
and on the audio tapes.

Once accepted, another discussion was held with the demonstrator to
determine the structure and general thrust of the presentation. The
presenter then prepared a first draft of the slides and supporting text.
These were then reviewed until all parties were happy. A formal
presentation was then held at Salford for two or three members of the
SOLUTIONS team. A constructive critical discussion was then held to
iron out any problems.

For the presentation it was felt that the critical factors were as follows.

¢ It should not be too technical, but rather aimed at senior managers
stressing the business benefits. This message would also be relevant to
the DP/IS managers who could use it as a lever to obtain the methods
and tools to improve quality and productivity.

* The presentation must be interesting and stimulating.
» The presenter must be credible and professional.

¢ Slides must be simple and readable.

32 The DTI SOLUTIONS programme (1989-91)

e The time for the presentation was critical, typically 30-35 minutes
with 5-10 minutes for questions and discussion.

* The presentation should fit the underlying message of the
SOLUTIONS programme.

The application of these procedures and criteria was reflected in the
high quality of the resulting presentations.

At all the events a questionnaire was distributed and attendees were
asked to fill it out before they left or post it from work. The aim of the
questionnaire was to find out their opinions of the event and whether they
would be investigating how they could use SE methods and CASE tools
in the future.

Eight quarterly newsletters were published and each circulated to
5000 named business executives. Readers surveyed showed 70% of the
recipients found the newsletter interesting, informative and relevant to
their companies. A slide-tape presentation was produced as a visual guide
to best practice in software development. At the end of the project a
‘drive time’ audio tape was produced, summarizing the key messages and
case studies of the SOLUTIONS programme. Extensive media coverage,
news items and feature articles were secured in national, local, trade and
business media. Most of these were either based on case studies
(Solomonides et al., 1992) or dealt with the general proposition of the
need for properly planned and managed software development.

The main achievements of the programme can be summarized as
follows:

» Fifty management and technical events were completed;
* 2242 delegates representing 1867 companies attended;

* 77% of management seminar delegates were from SMEs, of which
47% were at director level and 32% line managers;

* 54% of technical workshop delegates were from SMEs, of which 12%
were executives and 27% DP/IT managers;

* Over 80% were motivated to take action following the events;

» Eight newsletters were published and distributed to 5000 companies;

The takeup of SE methods and CASE tools 33

¢ Over two-thirds of the attendees distributed the information to other
people in their company and over half investigated software
engineering (SE) methods and CASE tools.

3.3 THE TAKE UP OF SE METHODS AND CASE TOOLS

In contractual terms the project was a success. We attained, and in many
cases exceeded, the attendance targets set by the DTI. The analysis of the
questionnaires after the events showed that most delegates felt the effort
of attendance was worthwhile. However, the fundamental question is:

‘Did the seminars manage to raise the delegates interest so that some
action was initiated?’

A questionnaire was sent out six to nine months after the event took
place. The purpose of the questionnaire was to decide, after the first flush
of enthusiasm, whether the attendees’ organizations had started to adopt
SE methods and CASE tools. In other words had we raised their
awareness to such an extent that they had investigated the use of SE
methods and CASE tools in their organization. The choice of follow-up
after six to nine months was purely pragmatic. It was felt that by this time
the organizations would at least have started a study and may even have
had the results and started implementation. Leaving the survey any longer
increased the chances of the participants forgetting the SOLUTIONS
event and meant that the DTI would not have the results of the feedback
into their other programmes.

The questionnaire was individually addressed and printed on coloured
paper to make it stand out against other printed material on the recipient’s
desk. As the questionnaires were returned they were logged. After
approximately four weeks those who did not reply were sent another
questionnaire. The first mailing produced most of the replies. Three
hundred and forty replies were received for the attendees of the
‘Achievements with Software Engineering’ and 194 replies were received
for the ‘IT for Competitive Advantage’ event.

34 The DTI SOLUTIONS programme (1989-91)

3.4 ANALYSIS OF ‘ACHIEVEMENTS WITH SOFTWARE
ENGINEERING’” EVENTS*

Not all the questions will be discussed; only the ones considered pertinent
to the question, ‘Did the organization do anything concerning SE
methods and tools after the event?’ In other words, was awareness raised
to such an extent that the delegates initiated some action in their
organization?

Rather surprisingly 45% of the organizations attending the event were
already using SE methods. Perhaps they were coming to see what other
people, the demonstrators and their competitors, were doing. We don’t
think that they misunderstood the reason for the event as delegates were
generally satisfied with the event. After the event 50% of the delegates
who had not previously used SE methods were persuaded to investigate
such methods. They did this by obtaining further information from a
variety of sources such as the National Computing Centre, supplier
literature, training seminars and further research of an unspecified type.
Some mentioned seeking management approval for finance, but nobody
launched straight into use. Of those that did not do anything, 56%
thought it not relevant, 21% their organization was too small and 23% the
time was not ripe but may look at it later. The small organizations were
usually consultants who were filling in gaps in their knowledge. They
were also on the look out for clients and usually prefaced their question
with ‘I am John Jones, a consultant, and would like to ask the following
question...’

Thirty-one per cent of the organizations were already using CASE
tools. The reasons for this were similar to those for SE methods; they
were coming to see what other people, the demonstrators and their
competitors, were doing. Additionally, the definition of a CASE tool
varied. Delegates argued that any tools that help produce systems are
CASE tools such as project management tools, 4™ generation languages
or totally integrated CASE tools. One definition of CASE tools is:

‘...software packages which automate or support one or more
activities of the systems development cycle. They should have their
own database holding the deliverables which they use and produce,
and may optionally have a graphics front-end by which deliverables
can be entered or updated manually.’ (Rock Evans, 1990).

* see Kirkham and Stainton (1992) for further details

Analysis of ‘achievements with software engineering’ events 35

This definition would exclude project management tools but include 4™
generation languages.

Table 3.1 shows the cross tabulation for the questions ‘Were you at
the time of the event using SE methods?’ and ‘After the event did you
investigate CASE tools?’.

Table 3.1 Impact of events

Were you at the time of the event using SE

methods?
After the event did you investigate Blank No Yes
CASE tools?
Blank 10 10 76
No 3 93 43
Yes 2 69 34

Table 3.2 Usage of tools and methods amongst attendees

Were you at the time of the event using SE

methods?
Were you at the time of the event using Blank No Yes
CASE tools?
Blank 10 4 0
No 5 163 53
Yes 0 5 100

Of those already using SE methods at the time of the event 22% of
them decided to investigate CASE tools to support the SE method.
Perhaps they had already carried out the investigation of CASE tools

36 The DTI SOLUTIONS programme (1989-91)

appropriate for their adopted method before the event. On the other hand
40% who did not use an SE method investigated CASE tools.

A point stressed by many of the demonstrators was that a CASE tool
could only be employed effectively if a suitable SE method is in place. A
study by Price Waterhouse (1990) showed that one in five people using
CASE tools had rejected them, leading to the term ‘shelfware’. This is
shown forcibly in Table 3.2 where only 3% are using an SE method with
no supporting CASE tool. Of those using an SE method 65% supported
the use with a CASE tool.

After the event, an encouraging 40% of those who had previously not
used CASE tools were persuaded to investigate such tools. However,
eleven claimed to have started to use a CASE tool. Of those that did not
do anything, 19% were already familiar, 49% thought it not relevant, 8%
had a change of role and many claimed that expense and time (24%) were
prohibitive at this time.

3.5 ANALYSIS OF ‘IT FOR COMPETITIVE ADVANTAGE’ EVENTS

Figure 3.1 shows that the delegates’ organizations were aware of the
potential effect of IT upon competitiveness. Typically, two-thirds of the
companies have an IT plan and in over 60% of them the IT and Business
Plans were linked. This, if true, is a very encouraging trend as the Price
Waterhouse IT Review (1992) cites the top issue as ‘Integrating IT with
Corporate Strategy’ (see Fig. 3.2).

The delegates appeared to work for companies who took a long term
view of the future. At the time of the event, 24% of the organizations
were using SE methods and of the companies who had not previously
used SE methods 53% were persuaded to investigate methods. 32% are
now using SE methods. This represents an increase of 33% over the
number at the time of the event. At the time of the event 20% of the
organizations were using CASE tools and of the companies who had not
previously used CASE tools, 36% were persuaded to investigate methods
and 15% are now using CASE tools.

Analysis of ‘IT for competitive advantage’ events 37

IT gives competitive edge to company?

Company has an IT plan?

IT and business plans linked?

0 20 40 60 80 100
Fig. 3.1 Attendees’ perception of impact of IT on business.

50
af
30 I Cost containment

M Recruiting staff

[CIMeeting project deadlines
20 Wl integrate IT & corp. strategy
10

1988 1989 1990 1991

Fig. 3.2 The top four factors.

38 The DTI SOLUTIONS programme (1989-91)

Time

Cost

Staff expertise

Management awareness

Information

Not applicable

Fig. 3.3 Barriers against SE methods.

Time

Cost

Expertise

Management awareness

Not applicable

0 10 20 30 40 50

Fig. 3.4 Barriers to CASE tools.

Critical success factors 39

According to the Price Waterhouse survey cited above, the IT
departments’ expenditure in the latter half of the 1980s has been
restrained and cut back. Furthermore, the problem of cost containment
has become one of the four key issues of the 1990s (see Fig. 3.2).

The main barriers against introducing SE methods and CASE tools
into organizations are shown in Figs. 3.3 and 3.4. As can be seen in both
cases, in descending rank order, the barriers to introducing SE methods
and CASE tools are cost, expertise, time and management awareness. In
an atmosphere of cost containment, cost, expertise and time become
critical and companies are reluctant to increase costs and invest in new
methods and tools.

3.6 CRITICAL SUCCESS FACTORS

It is worthwhile attempting to identify the critical success factors in the
hope that this may help subsequent programmes of this nature. What was
extremely rewarding was that SOLUTIONS not only succeeded in
creating awareness, it also had impact; organizations who attended the
events or received publications took action as a result. Delegates that
attended the event felt that it was time well spent.

This was not a study of a problem or of ‘what to do’ and in that sense
there are no conventional recommendations. Set out below are the factors
that were important in helping the programme reach its objectives. It is
for the reader to decide whether these factors are relevant in other
programmes of this type and should be treated as recommendations. The
following are the main factors:

» The project was approached as a marketing exercise; care was taken
not to lose the prime objective of the programme which was to create
an awareness of software engineering methods and CASE tools in
British industry and encourage it to take action.

» Although the creation of quality events, newsletters and other delivery
products, such as audio tapes and tape-slide presentations were
important they were not the prime goal, but merely the vehicles.

» Driven by the above considerations the programme created, in a cost-
effective manner, several deliverables that could be used flexibly to
meet the customers’ requirements.

40

The DTI SOLUTIONS programme (1989-91)

Central to the success of the programme was the ability to respond to
feedback and be prepared to experiment with new ideas. This required
close liaison with the DTI and the ability to back the proposals for
change with relevant facts.

The project required three very important skills, project management,
technical expertise and public relations and marketing.

Vital to the success of the programme was the quality and appeal of
the chosen demonstrators coupled with the ability of the core team to
provide a series of linking presentations to design effective events.

Focusing on the business benefits was the most effective way to
achieve the objectives of the programme.

Careful choice of facilities and the geographical locations of the venue
was very important.

The quality of the mailing list database was important in attracting the
right audience.

Short events, such as Breakfast Seminars, were as effective in
achieving the objectives of the programme as the longer events.

The optimum number of delegates was around the 40 to 50 mark
allowing for better audience participation than in the larger events.

The programme also succeeded in getting organizations who were
making use of SE methods to review their current practice. This was
an unplanned achievement.

Finally through Management (Breakfast) Seminars the programme
was successful in targeting SMEs and green field sites, two of the
main targets of the SOLUTIONS programme.

Further information 41

3.7 CONCLUSIONS

SOLUTIONS was a campaign to increase the awareness in British
Industry of the existence and benefits of software engineering methods
and CASE tools. The programme comfortably met and exceeded the
contractual obligations regarding the number of events, average
attendance and profile of people attending. It went substantially beyond
these measures in providing a programme of events, newsletters and
publicity that had an impact well above the norm for this type of
programme. Both the technical and the managerial events were successful
in raising the awareness of SE methods and CASE tools.

ACKNOWLEDGEMENTS:

1. This chapter was compiled after the SOLUTIONS contract which
was carried out for the DTI from March 1989-March 1991.

2. The team consisted of Salford University Business Services Ltd,
who provided the project management, the Information
Technology Institute, University of Salford, who provided the
technical expertise and PACE Communications Ltd who provided
the PR and marketing.

3. Special mention must go to Paul Bowker (University of
Huddersfield), Stewart MacKay (Salford University Business
Services) and Mr Tim Ingham (PACE Communications) who
contributed greatly to the success of the project.

4. The principal authors would like to thank John for this chapter and
all the above mentioned for access to the material derived from the
SOLUTIONS project.

FURTHER INFORMATION

Further information regarding SOLUTIONS is available from:
Stewart Mackay, Salford University Business Services Ltd,
Technology House, Lissadel Street, Salford, M6 6AJ.

Tel: 061 745 7457.

CASE usage in the UK, 1991*

4.1 THE UPTAKE OF CASE

Towards the end of 1990, staff at the University of Sunderland undertook
a survey of the use of CASE within the United Kingdom (Stobart,
Thompson and Smith, 1991b). The survey was undertaken by sending a
postal questionnaire to 480 organizations involved in the development of
commercial software.

The purpose of the survey was to quantify the actual usage of CASE
in the UK. While many forecasts for the future and expected impact of
CASE have been published, (Chikofsky and Rubenstein, 1988; PACTEL,
1985), few surveys had been undertaken to determine how much CASE is
actually being used. Those surveys which had been completed (Hughes
and Clark, 1990; Parkinson, 1990; Stobart, Thompson and Smith, 1990a)
were either not UK-based or were undertaken before current CASE tools
were available on the market.

There are many people around who will tell you that the level of
usage of CASE is high; however, many of these are commercial CASE
vendors and thus have a vested interest in making such statements and
thus convincing potential CASE users that they, too, should invest in the
new technology.

4.1.1 Objectives

The main objectives of the survey were:

* to determine the level of usage of CASE tools, particularly within the
commercial sectors of computing in the UK;

* The authors gratefully acknowledge the contribution made by Simon Stobart and
Barrie Thompson to the work in this chapter.

The uptake of CASE 43

¢ to determine the hardware and software platforms used by those
companies who had chosen to invest in CASE technology;

* to identify which areas of software development cause the most
problems and how (if at all) CASE has helped to solve these
problems;

* to determine those areas of the software life cycle which are currently
automated, and to highlight areas which would benefit from
automation in the form of future CASE tools;

» to determine the quality and efficiency benefits which have been
achieved by companies who use CASE;

e to identify problems with current CASE technology and highlight
areas for future improvement;

* to find out why many organizations have decided to reject CASE.

4.1.2 Results

The survey was sent to 480 organizations. The response rate was a
relatively disappointing 25%, of which 23% of the whole proved to be
useful responses. Follow up enquiries revealed that non-respondents had
not responded because they did not use CASE.

The survey succeeded in painting a picture of an industry that has not
yet really woken up to the use of CASE technology. That is, there
appeared to be a relatively low (18%) usage of CASE among those
people who replied to the survey (Table 4.1). The enquiries amongst non-
responders suggested that the actual uptake was considerably lower since
most people who did not reply did so because they were not using CASE.

There was, however, a great deal of interest in CASE and over half of
the respondents indicated that they were either using CASE, going to use
it or considering using it in the future. This promises a great deal more
use of the technology as we move through the 1990s, particularly when
you consider the new and much more advanced tools that are becoming
available all the time. The major reasons given for rejecting CASE are
summarized in Table 4.2 and illustrated in Fig 4.1.

44

CASE usage in the UK, 1991

Table 4.1 Uptake of CASE amongst respondents

Response Percentage
Currently using CASE 18%
Currently evaluating CASE 26%
Considered but dismissed 13%
Willing to purchase 6%
Not evaluating 26%
Not sure 11%

Table 4.2 Reasons for rejecting CASE

Reason for rejecting CASE Percentage
a) cost of currently available tools 31%
b) no management backing for CASE technology 16%
c) current approaches appear to be satisfactory 13%
d) lack of belief in the claimed productivity benefits 8%
€) lack of supported methods 8%
f) poor quality of tools 7%
g) staff refusal 1%
h) lack of belief in the claimed quality benefits 1%
i) other 15%

The uptake of CASE 45

Percentage

35~

Factor
Fig 4.1 Reasons for rejecting CASE.

The respondents were gloomy about the future for CASE. Their
perceptions of the future are given in Table 4.3.

Table 4.3 Perceived future for CASE

Perceived future for CASE CASE users Non-users
No future 16% 11%
Little improvement in tools 32% 46%
Substantial improvement leading to market acceptance ~ 52% 36%
Become accepted by developers as preferred method 0% 5%
Totally change software development and maintenance 0% 1%

48% of respondents using CASE saw little or no future for CASE,
whilst 57% of non-users were equally pessimistic. This degree of
pessimism may be attributable to unrealistic expectations in the first
place.

46 CASE usage in the UK, 1991

4.2 PROBLEMS AND DIFFICULTIES

The underlying reasons for the pessimistic view of the future of CASE
tools was explored in three questions:

* Problems identified by current CASE users
* Required facilities for future tools from existing CASE users;

* Required facilities for future tools from those not currently using
CASE tools.

The responses are shown in Figs. 4.2, 4.3 and 4.4 respectively. What
emerges quite clearly is that those who have used CASE have different
priorities from those who have not.

In particular, code generation and software testing facilities are a
higher priority for non-CASE users and high quality graphics are less
important.

Introducing CASE technology within a data processing department
can, in itself, create a number of problems and difficulties (Stobart,
Thompson and Smith, 1990b). If the department concerned already has a
high commitment to the use of development methods, documentation,
standards and quality assurance practices, the transition to a semi-
automated approach using CASE can be quite straightforward. That is,
because the organization is already used to working with methods and to
providing documentation the introduction of CASE can simply be seen as
supporting those procedures which already exist. This assumes, of course,
that the CASE tools which are to be introduced within the organization
support the methods which are currently in day-to-day use.

If, however, the CASE tools which are being introduced do not
support current working practices because they conflict with the methods
which are currently in use, there are sure to be problems as a whole new
set of working practices will have to be introduced and learnt.

Similarly, if an attempt is made to introduce CASE technology within
an organization which has not been used to employing software
engineering methods, techniques and standards, there will certainly be a
lot of very large problems. It is almost certainly better to introduce
methods for software engineering gradually and to follow them with the
tools to support the methods. Trying to introduce everything at the same
time is probably a recipe for disaster.

Problems and difficulties 47

Poor code generation

Poor tool integration

Poor generated documents
Poor user interface

Poor supplier support

Poor user interface

Poor documentation

Lack of multiuser facilities

0 5 10 15 20

Percentage of users

Fig 4.2 Major problems identified by existing users.

Reverse engineering
Code generation
Increased security
Customization
Software testing facilities
Expert system assistance
Full method support
Improved generated documents
High quality graphics
Multiuser systems

Percentage of users

Fig 4.3 Required features identified by existing users.

Reverse engineering
Code generation
Increased security
Customization
Software testing facilities
Expert system assistance
Full method support
Improved generated documents
High quality graphics
Multiuser systems

oLl Z'yl_ilsl

4 6 8 14
Percentage of users

CASE users.

48 CASE usage in the UK, 1991

Typical problems that can arise when introducing CASE are:

* communication problems — how is team work supported by CASE?
» fear that introduction of CASE may lead to loss of jobs;
* training staff into the new way of working;

» productivity may not rise immediately — there will be a learning curve
and a settling-in period;

* how can you be sure that the CASE product which you introduce will
not be out-of-date in a few years?

* new hardware and software may be needed to run the new tools;

* the cost of buying CASE tools, hardware and training may be difficult
to justify to management.

Of course, introducing CASE should bring benefits and advantages as
well as problems. Otherwise it would not be worth even considering the
introduction of CASE. The remaining chapters in this book will focus
upon ten lessons which demonstrate successes, failures, problems and
solutions and what can be learnt from these.

4.3 CONCLUSIONS

The area of CASE is, of course, dynamic and constantly changing, and
any survey is only valid within a very short time scale. What can be
clearly and safely stated is that the use of tools is still lower than one
might have thought (or hoped); but the usage is growing and will
continue to do so.

There is, therefore, a clear need for more information on tools and for
clear documentation on the successes (and failures) of CASE usage. For
CASE to be fully accepted within industry in general, there need to be
much better means of effective technology transfer. In particular, there
needs to be clear quantification of the benefits to be gained by the
implementation of CASE within the software development process.

The UK Department of Trade and Industry (DTI) SOLUTIONS
programme (SUBSL;1991) described in the previous chapter was set up

Summary 49

to address many of these issues and particularly to raise awareness of best
practice and experience in implementing both CASE tools and methods.
Many of the case studies contained in this book are drawn from that
programme. The aim of Part Three is to provide some of the required
information, particularly in the areas of implementation and management
of methods and tools.

4.4 SUMMARY

The main findings of the Sunderland survey described in this chapter
were as follows:

CASE was found to be used by a low proportion (only 18%) of
respondents;

Most CASE users are working with tools which are based on a
microcomputer or a workstation (rather than a mainframe computer);

Most CASE users are also applying a semi-formal software
engineering methodology (e.g. Yourdon, JSD/P, SSADM);

Those software developers who do not use CASE tend not to use any
formal or semi-formal methodologies or techniques for software
development;

Several people indicated that future tools should provide better
automated documentation, full method support, validation facilities
and better code-generation;

The ability to support team projects, multi-user development and
computer aided co-operative working practices was highlighted as a
major problem with current CASE technology;

Less than 15% of respondents thought that CASE had no future at all,
but nearly 50% were pessimistic about improvements in the near
future;

Most people thought that the use of CASE would increase in the
future.

50 CASE usage in the UK, 1991

FURTHER READING

Stobart, S.C., Thompson, J.B. and Smith, P. (1991) The use, problems,
benefits and future directions of CASE in the UK. Information and
Software Technology, 33(9) 629-636.

Full details of the survey and findings are presented in this journal article.

PART THREE

LESSONS FOR THE FUTURE

Methods come before tools

5.1 INTRODUCTION

This chapter focuses upon the role and importance of methods in the
process of information systems development. In particular, lessons
regarding the importance of methods are illustrated by two case studies.
One of these is taken from the experiences of a large Government
department, the other from a financial institution.

Both of these case studies illustrate the importance of methods and,
what is more important, of clear commitment to those methods
throughout the organization. Tools can, and do, of course, help; but
without a method which everyone is committed to and adheres to, they
are of little use or value.

The chapter begins with a brief history of methods, followed by a
survey of some of the most important methods and tools. The two
detailed case studies follow. A summary section presents the main
lessons learnt and principles demonstrated by the case studies. The
chapter closes with a list of reading material regarding methods and tools.

5.2 THE IMPORTANCE OF METHODS
5.2.1 Background

All branches of engineering have a set of methods and tools with which
to work. For instance, civil engineers have methods to aid in the
calculation of the stresses and strains on bridges, electronic engineers
have methods to help in the lay-out of electronic components on a circuit
board, and chemical engineers have methods based on chemical
equations to help when working with chemical reactions. Information
system engineering is no different to any other branch of engineering in
this respect: " Methods are equally’ important during the design and

54 Methods come before tools

implementation of an information system as during the design and
construction of any other engineering artefact.

Information systems engineering has developed from the discipline of
software engineering which has, in turn, developed from the art of
programming. It must not be forgotten that it is not that many years ago
that there were no methods for the programmer to work with. Indeed, in
the early days of computing, programming was truly an art and not a
science. The early programmer had no methods to help him/her in the
task of software construction.

Fig. 5.1 illustrates the way in which information systems development
has matured over the years. It should, however, be stressed that
information systems engineering is still a relatively immature discipline
in comparison with many of the more established, and more traditional
branches of engineering. Indeed, it is only in quite recent times that
methods have become available for designing and constructing
information systems. Even today, there are many methods around and
little real agreement as to which is the ‘best’ method (if there can ever be
said to be such a thing).

It was the so-called ‘software crisis’ of the late 1960s (Naur et al.,
1976) which brought a realization that methods were needed if software
development was ever to become a truly professional engineering
discipline. Out of this realization a series of methods were born. An
overview of the history of information systems development methods is
presented in Table 5.1.

Therefore, the information systems developer now has a set of
methods with which to work. Which methods should one choose for a
particular project? This is often a difficult question to answer as there
may be many factors involved in making such a decision.

For instance, the following questions may determine the answer:

¢ What methods do I (and any other people involved) already know?

¢ What are the characteristics of the problem environment?
Real-time? Data processing? Safety critical? etc.

* What tools do I have available to support the methods?

* Are any methods required by the client or because of legislation?

The importance of methods 55

|ﬁgramming

No methods

Black art 1950s
2

[Software engineering 1960s |
v

Advent of structured 1970s

programming
4

| Information system engineering 1980s |
v

Structured methods

Formal methods

CASE 1990s

— —2)

56 Methods come before tools

Table 5.1 A tabular history of methods

Period Methods Application
1950s Flow charts General purpose
1960s MASCOT Real-time
Structured programming General purpose
1970s JSP Commercial DP
Yourdon General purpose
Warnier-Orr General purpose
1980s SSADM Commercial
ISD Real-time
HOOD Object-oriented
systems
VDM, Z Formal

specification

The following section summarizes some of the most common methods
that are available to the information system developer.

5.2.2 Categories of methods

Methods are now widely used throughout the software development
community. A study of 230 organizations undertaken in the United
Kingdom by market analyst Spikes Cavell in 1992 (Spikes Cavell, 1993)
revealed that 73% of companies use one form of method or another. The
survey also showed that almost 19% of those companies which were not
currently using a method were planning to do so in the future. These
results are illustrated in Fig. 5.2.

This represents, then, a major commitment to the use of methods
within the UK information systems development:community. However,
one common statement that is still made is:

‘It doesn’t matter what method you use, as long as you use a method.’

The importance of methods 57

Meathod Considering

No method 19%
2T%

Not considering

81%

Fig. 5.2 Uptake of methods in the UK, 1992 (after Spikes Cavell).

There is certainly some truth in this statement but certain methods are
better suited to certain application areas. For instance, methods such as
SSADM (see below) are ideal for the development of large commercial
systems, formal methods such as VDM (see below) are well suited to
systems which particularly require mathematical rigour during their
development to ensure high quality and reliability, and software design
methods such as JSP (see below) provide a good approach to the
development of commercial software modules.

A selection of the most common categories of methods is discussed
below. Methods exist to address every aspect of information systems
development including systems analysis, systems design, software
module design, software implementation, validation and project
management. The categorization given below is not, however, based upon
the areas of the development life cycle which the method addresses.
Rather, it is based upon the fundamental principles which underlie that
particular class of method:

¢ Informal methods

¢ Data flow methods

» Data structure methods
* Structured techniques

» Formal methods.

58 Methods come before tools

Informal methods involve the application of the generic principles of
software engineering such as structured programming and stepwise
refinement. These are, however, basic principles and are not in
themselves methods. There are, of course, many methods based upon
these two principles, but simply applying these principles is a long way
from using a method.

There are many software developers who will claim to use structured
programming and/or stepwise refinement as a method. They are, no
doubt, applying these important principles, but they are not really
applying software development methods. The use of the term method
implies the use of a systematic, standardized approach to software
development. That is, the developer should follow a laid down set of
rules which constitute the method.

There are, of course, many companies which have extremely
respectable and useful in-house methods. Such methods may well grow
out of a company’s existing working practices. This will cause minimum
disruption as the method will build upon practices with which the work-
force are already familiar. There are also dangers in developing such in-
house methods. They can lack the rigour and quality assurance rules that
are built into external methods. The survey of Cavell found that a quarter
of the organizations in the UK claimed to use an in-house method.

Data flow methods are based upon the flow of data though a software
system. The method will usually result in the production of a data flow
diagram of the software. This data flow diagram will then be refined into
a program structure chart in terms of the three fundamental constructs:
sequence, selection and iteration.

Program design methods that fall into this category are those
developed by Constantine and Yourdon (Yourdon, 1989). System design
methods which are based on data flow principles are Gane and Sarson’s
Structured Systems Analysis (Gane and Sarson, 1977), DeMarco’s
Structured Analysis and System Specification (DeMarco, 1979) and
MASCOT (Modular Approach to Software Construction, Operation and
Test) (Simpson, 1986).

Data structure methods are methods which attempt to model the
structure of the data on which the software system is operating. The
objective of this approach is to try to model the real world in terms of the
data. Object oriented approaches can also be included in this category as
they attempt to model the data on which the software system operates in

The importance of methods 59

terms of objects and the operations which can be performed on those
objects.

Methods which fall into this category are those developed by Michael
Jackson (1975,1983), namely JSP (Jackson Structured Programming) and
JSD (Jackson System Development), and LCS (Logical Construction of
Systems; Warnier, 1981).

Many of the more popular structured techniques have been formed
from a collection of well-established procedures, rather than being based
upon a basic principle such as data flow. Techniques which are often
incorporated in such methods are:

* Structure charts

* Data flow diagrams

* Entity life histories

* Entity relationship diagrams

* Relational data analysis.

Methods of this type include SSADM (Structured Systems Analysis
and Design Method; CCTA, 1990) and Information Engineering
(Finkelstein, 1989).

SSADM is almost certainly the most widely used method in the UK. It
was developed on behalf of the Government’s Central Computer and
Telecommunications Agency (CCTA) and is the mandatory method for
any public service work in the UK. The method is now controlled by the
BSI (British Standards Institute) and thus provides its large user base with
a well-known, standardized and well-documented approach.

Although many people will argue strongly about the advantages to be
gained from use of SSADM, there also some companies who would
claim that it does not match their own particular requirements fully. For
instance, one IT professional, whose company has customized SSADM to
its own needs states (Spikes Cavell, 1993):

60 Methods come before tools

‘There are very big holes in SSADM, which the manual is quite
honest about. For example, if you look for guidance about what to
include in a program specification, what they say is that you should
produce a program specification to the standards of your organization and
that’s all.

Pure SSADM also gives you absolutely no guidance on planning the
testing of a system beyond saying that at some stage you have to plan
some testing. It gives no guidance about planning for the implementation,
converting data from existing systems or constructing physical files.’

Methods such as STePS (Edwards, Thompson and Smith, 1994) have
been proposed to help solve such problems.

All the methods which have been referred to above are semi-formal in
nature. That is, they help the user to develop diagrammatic and textual
models of the system and its data. Formal methods use mathematics to
represent the system being modelled. The main argument for the use of
formal methods is that mathematics is precise and unambiguous
compared to other approaches which are more prone to both error and
misinterpretation.

Methods which fall into this category are VDM and Z (Sommerville,
1989). Such methods are commonly used in areas where rigour and
correctness are of prime importance such as safety critical systems.

However, no matter which method is chosen for a software
development project the following important principles must be adhered
to if the project is going to be successful:

* management must be committed to use of the method;
« staff must be fully trained in the method;

+ formal review systems should be set up to ensure adherence to the
method.

That is, starting off on a large development project, and using a
formal or semi-formal method for that project, is not something that
should be entered into lightly. It requires full commitment for all who are
involved in the project. If that commitment is not present, then there are
likely to be problems during the project.

The same set of principles can also be said to apply to tools. However,
in the case of tools, it is even more important that there is a clear
commitment to both the tools and the underlying methods. It cannot be

The importance of methods 61

stressed enough that tools are of no use without an underlying method.
Tools are designed to support methods and, by definition, CASE tools are
designed to support the software engineering process, which implies the
use of methods.

5.2.3 Tool support for methods

A large number of CASE tools have been designed to support specific
methods. A selection of these are shown in Table 5.2. Many other CASE
tools are generic and support techniques which are common to many
methods such as data flow diagrams, program structure charts and entity
relationship models.

Table 5.2 A selection of methods and the supporting tools

Method Developer Tool
Information James Martin Associates IEF
Engineering

Excelerator

Application Development

Workbench
SSADM LBMS/CCTA LBMS tools
ISP Michael Jackson PDF Speedbuilder
Systems Thinking Cognitus Systems Ltd Ithink
Business Process TI Business Design Facility
Re-engineering (BDF)
(BPR)
DeMarco Method Meta Systems Structured Architect
Yourdon Yourdon Ltd Yourdon Tool Kit

However, whatever form a CASE tool takes, it will be used in
conjunction with some sort of software development method. It is vital
that the staff who are to use the tool are well-versed in the use of the
method. This is a pre-requisite for the introduction of any CASE tools.

62 Methods come before tools

5.3 CASE STUDIES
5.3.1 Helping training centres work better

This case study focuses on the Information Systems Unit (ISU) of a UK
Government department and how methods helped them successfully to
run a training project.

Unlike most departmental ISUs, this unit was not restricted solely to
IT projects. Responsibility was also present for some financial
monitoring, typically of departmental running costs. The staff assignment
section was also part of the services offered by the ISU. The ISU also had
a section of specialist IT personnel and this section supported all aspects
of IT within the department, ranging from mainframes through minis
down to PCs, and developing software in conventional languages as well
as in Fourth Generation Languages (4GLs). Standard packaged software
was also supported by the ISU.

The department’s IT strategy was influenced by their business
strategy. This business strategy influenced everything done by the unit as
well as the means by which it went about its business. Typically, there
were four main areas that encompassed the entire strategy. These four
areas were:

¢ communications
e hardware
¢ software

¢ methods.

It is, of course, the latter category that we are most interested in within
this case study.

SSADM, PRINCE and business analysis have all been adopted, as
well as some other, less formal, techniques. This case study illustrates
how successful the use of these methods was, and how they were used to
gain great benefits in the development project concerned.

The project in question was like most other projects developed
in-house by the ISU, in that it did not solely relate to the ISU and the
system users. That is, there were other parties who were interested in, and
involved.in; the-system-which.was-to be developed. Although the users
had the major interest in the project, other groups were also involved.

Case studies 63

» The data protection officer, who was responsible for registering the
systems.

* The management team, who were involved in planning, resource
training and general business issues.

* The Government department, which was interested to see how the
system achieves its objectives, and how it might assist the department
in achieving its overall aims.

» Central information systems development (ISD), as they were the
owners of the technical staff, and had overall control regarding
staffing levels.

* Trade unions, whose aim was to protect their members and to agree a
suitable workplace agreement.

* Internal Audit, who may be the last on most people’s list of interested
parties but are, in fact, vital to the successful implementation of a
system. In this particular instance, the ISU involved Internal Audit
staff from the outset and reaped many benefits from such an
arrangement.

The users of the system were spread throughout a large geographical
area in Training Centres. There were 12 such centres, generally located
on the outskirts of larger towns. Some of these centres acted as
administration points for smaller ’satellite’ units, of which there were
five.

Other major users of the system were the Management Training Unit
who wished to use the system to assist in administration, and the
Headquarters branches, namely Administration and Finance. Their use
would centre largely on query facilities.

The prime objective was to help the local managers become more
autonomous and to take more responsibility for the generation of the data
and use of the information produced. There were areas within the
workplace where there was duplication of data and the system provided a
means of reducing these phenomena. The hardware, software and
communications installed provided the basic building blocks for the
department’s IT strategy.

The department had _a_staff training branch and a budget to cover
training expenses. The department also supported staff development

64 Methods come before tools

schemes such as the British Computer Society’s Professional
Development Scheme.

It was felt very strongly that if the system was to function efficiently
then its users must be equipped to get the best from it. No outside
consultants were required in the provision of training as the courses were
designed, documented and taken by staff from within the department.

As part of the training project, systems were developed covering
seven areas.

¢ Personnel records for trainees to monitor the educational
achievements of trainees.

* Payroll interface to allow accurate and timely payment of trainees.

* Course diary details which correlate instructors and classes.

* Limited personal information on instructors including training history.
¢ Company records detailing those with links to the training centres.

* Records detailing applicants.

e Management information provided as requested and on an ad hoc
basis

The benefits achieved already and those still to come were directly
linked to the objectives of the project. As a tool in assisting local
management to improve the accuracy and timeliness of its data, it was
very successful in providing help in monitoring progress against pre-set
management targets.

Duplication of data was reduced and a central focal point of
information became available. The role of the marketing officer was
greatly assisted by the capabilities of the system to identify trends and
give information on recruitment and placement. Some direct financial
savings were accrued (e.g. the reduced use of DataPost, improved
accuracy leading to fewer payments being spoiled and so on).

Furthermore, as part of the IT strategy the group had become
equipped to deal with even more widespread applications.

The project management method PRINCE was used to manage and
control the project from the outset. The process was an iterative one, as
illustrated in Fig. 5.3.

Case studies

Fig. 5.3 Planning, action, control management cycle.

The questions that had to be addressed at the planning stage were:

* What are the objectives?

¢ What are the end-products?

* What activities are required?

* Have quality criteria been set?

* Where are the dependencies?

* Have control points been set?

¢ Do yardsticks exist by which to set time scales?
* What resources are required?

* What are the constraining factors?

The change control process must address the following issues:

* What is the change?

* What are the implications on the plans for the options?
* How critical is it that we do something?

* What is the best way forward?

* What are the consequences?

65

66 Methods come before tools

» Are there any knock-on effects?

¢ How is the business case affected?

The project board was the real managing agent of the project. It was
manned by a chairperson and at least one senior user and one senior
technical person. Their function was clearly defined and they assumed
overall responsibility for the project.

It must be stressed that the members of this group were very senior
members of the organization,; this is vital for any project to be successful.

Training for board members is also vital so that they can appreciate
the responsibility of their position. The project board should have the
power to terminate the project if it becomes necessary at any point during
the life of the development.

Another vital aspect of the PRINCE methodology is that of the project
assurance team. Like the project board, the members must be chosen for
their influence and skill in a particular area. There should be a user, and a
business and a technical assurance co-ordinator, all of whose roles
converge to give assurance on the approach and direction of the project.
It needs to be stressed that they do not have any executive authority to
take decisions, theirs is mainly an advisory role both to the project team
and the project board. Some of their main functions include advising and
assuring the stage team, assisting in the production of plans, assuring the
project board, maintaining documentation and providing project
continuity.

The approach described above was adhered to in this project, and was
found to be very successful.

The Structured Systems Analysis and Design Methodology (SSADM)
(Ashworth and Goodland, 1990) was used in this project. The most
notable features of the use of SSADM in this project were the support
tools used and the documentation produced:

* Support tools. There are various automated support tools available to
support SSADM. In this project, Automate and Datamate from
LBMS were used. These products have since undergone redesign by
the suppliers and are now marketed as Automate Plus, a composite
package of the earlier two.

Case studies 67

* Documentation. In any project, particularly in a large one, the
documentation produced and maintained is vital. SSADM produces
much documentation but in a concise format that makes it easier for
new members to join the team and become productive early.

The automated tool is invaluable in producing and cross-referencing the
documentation. The screen and report layouts, generated with the method
and quality assured with the PRINCE method, complement the
documentation to give a total picture of the shape of things to come.

The method has many advantages but it should be stressed that it
should not operate without a project management method controlling it
and does not, in itself, guarantee success.

The main advantages found from using these tools and methods were:

» astaged approach;

* ease of use;

* the setting of attainable objectives;

* the use of Quickbuild (see below);

* the reduction of dependence upon development staff; and;

 the quality of documentation produced.

The decision had already been taken that the software would have to run
in an ICL environment. This immediately restricted the implementation
options. An evaluation exercise was carried out comparing two 4"
Generation solutions (Quickbuild and Sygmar) with COBOL and a
conventional file approach.

To complete the project within the given time scales effectively ruled
out the possibility of using a conventional approach. Quickbuild uses a
structured approach which eases learning and aids subsequent
maintenance. Quickbuild was supported locally by ICL.

Immediately on completing the basic training course on Quickbuild,
the programming staff were able to deliver programs. These may not have
been the most efficient programs ever written but they indicated the short
learning curve required.

68 Methods come before tools

Requirements for change to the existing system can more readily be
put in place than if methods had not been using during system
development. Experience in the language has increased the knowledge
base of all the programming staff and this, coupled with the sharing of
problems, has greatly improved the speed with which changes can be
wrought. Again, the structure of the programs facilitates change and
awareness of the database design enhances the efficiency of these new
programs. Since the guidelines laid down in SSADM were followed
throughout the project, it is safe to say that documentation is complete
and to the required standard.

The project was judged a success. It was delivered within 5%
tolerances on all three counts of budget, time scale and resource. The
objectives, as detailed in the project initiation document, were met fully
and the benefits have already been realized. The tools and methods used
proved invaluable and the staff contribution to the project has been
recently recognized by a round of promotions within the group.

5.3.2 A strong case for methods

This case study is based upon the experiences of a large financial
institution. They have offices throughout the UK, assets of over £2
thousand million and several financial services subsidiaries, including an
estate agency chain of 86 branches. Within the institution, the Business
Systems Division comprises around 150 staff. The mainframes on which
the vast majority of processing is done are BULL DPS7 machines and
most systems have been built in-house using COBOL, which is still the
main development tool.

In the first half of 1986, a merger increased the size of the
organization by over 50% almost overnight. To cope with this, a major
recruitment campaign was instigated in 1987 with the aim of doubling the
systems development resource and bringing in systems project
management skills from outside the organization.

Major development commitments precluded any changes in existing
approaches until the second half of 1988 when two studies were initiated
to consider improvements. The aim of the first study was to make
recommendations on structured analysis and design techniques to be
implemented within the institution, whilst the second was intended to
investigate the CASE market place and to make recommendations as to
the future potential for such tools in the company.

Case studies 69

Several things quickly became apparent. The two projects described
above could not be run independently of each other because they could
result in incompatible recommendations. In particular, any CASE tools
purchased would have to support the methods which were to be taken up.

Even if the above two projects were to be combined into one project,
the objectives were not broad enough.

Two questions arose from the initial work carried out:

¢ Should the organization be selecting techniques without the
framework of a good ‘method’ within which to use them?

* Should the study consider only CASE, or should other tools such as
IPSEs (Integrated Project Support Environments) be included within
its scope?

It was ultimately, and very sensibly, decided to run one project to look
at methods, techniques and tools and recommend a way forward for IT
within the company.

The project finally recommended the following:

¢ PRISM as a set of methods; and

e Maestro as a CASE tool.

PRISM was chosen because it offered a wide range of different but
integrated methods. It allowed discrimination between major and minor
projects and covered the areas of enhancement and maintenance. PRISM
offered a logical separation of methods and techniques and did not tie the
company to any specific suppliers of tools and methods. It also allowed
them to maintain an existing, happy relationship with present suppliers in
the area of skills training.

The Maestro tool was chosen because it was not restricted to specific
techniques or methods, offering the flexibility to adapt to most
techniques. A further useful feature was the help that it provided in the
area of existing program maintenance.

The methods for business study, systems development, enhancement
and maintenance and personal systems development were purchased.
They were used in conjunction with the handbooks provided for quality
management, project management, risk management, structured
techniques and the information centre.

70 Methods come before tools

At the time of writing, the company had successfully implemented the
business study method. This involved integrating the method into their
procedures, producing standards for all the deliverables and extra
guidelines where the method was not clear, running pilot projects,
learning and applying lessons, and running a one-day introductory
seminar for all systems development staff. This was not an easy process.

A methods steering group was established to direct future
implementations. The lessons learnt were applied in the rest of the
implementation, including some of the following principles:

» The users of the methods should be treated as customers. They should
be involved in the processes of design and implementation and
educated properly.

* Similarly, the end users should be educated about the methods,
especially concerning their involvement and commitment as a critical
success factor.

* The IT staff require a usable, practical method. The IT customers
should see obvious business benefits resulting from application of the
method.

* Commitment must be shown to the methods and techniques and the
quality which follows from them.

* The methods should be fully adopted by the organization, and full
commitment should be given to these methods. Even where they are
bought off the shelf and implemented unmodified, they should be
wrapped up in the company or departmental logo, so that they become
‘their own’.

The methods must also be ‘sold’ to senior management outside IT,
concentrating on business benefits, and not the details and ‘bells and
whistles’ which you obtain when you adopt the methods. If they do not
accept the method, it is unlikely to be a successful implementation.

A large number of the problems with IT projects had stemmed from
failure to concentrate on the initial stages of the project life cycle.
Implementing the business study, which comprises a business-based
problem definition and feasibility study, has addressed this issue. More
specifically, it means that business problems, not technical solutions, are
what now drive IT projects. Furthermore, measurable, quantifiable

Summary 71

project objectives are set, based on the business problems and
requirements. Communication across departmental boundaries is
improved. The result is healthy arguments about objectives and
justifications before the development, rather than after implementation.

Finally, projects which should not go ahead are stopped by data
driven management decisions, not crippling overruns and failure to
achieve invented benefits.

A proposal for the purchase of the Maestro CASE tool was put to the
company’s executive once some experience of using the PRISM method
had been gained. It was rejected because they were not satisfied with the
lack of a convincing financial justification for an expenditure of £1
million over 5 years. At the time, the rejection was painful and seemed
short-sighted, but with hindsight it is hard to argue with.

The company decided to carry out a formal business study into the
area of CASE/IPSE tools. The reason for this is not so much a retreat
from the initial selection as a recognition that it was 18 months since the
selection was made and the market place had moved on. During that time,
much has been learnt about the methods and techniques which the tool
would be automating and the business study method has proved useful

5.4 SUMMARY

This chapter has focused on the subject, and importance, of methods.
Methods are at the very core of the software development process.
Without methods there is no structure, no standardization, little
documentation and less opportunity for formal review approaches.
Methods help add rigour, formality and hence should ensure a higher
quality end-product.

Tools can also be of great benefit and can also add to the quality of
the end-product. However, tools are of no use on their own. They must be
accompanied by methods. Indeed, the tools are only there to support the
method. Tools can help the software engineer work more efficiently and
more accurately but they cannot make up for the lack of a methodical
approach to software development.

The most important points to be remembered from this chapter are:

e A need to concentrate on business issues; these are the most important
part of any major project or development.

72 Methods come before tools

* The IT section has learnt that to implement a new method or
technique, they have to sell it hard and do it efficiently and effectively.

» It is important to educate and involve everybody.
* A real management commitment to quality is needed.

* A good project management culture is vital to the success of any large
project.

* Good communications and co-operation between all departments are
the key to success.

* A stable environment with a meaningful [T strategy is of prime
importance.

Finally, two general principles emerged from the work:

 First, methods must come before techniques which must come before
tools; and

» the more that you need methods, the harder they are to implement, and
vice versa.

FURTHER READING

Ashworth, C. and Goodland, M. (1990) SSADM : A Practical Approach,
McGraw-Hill, London.

Of all the software methods available in the UK, the adoption of
SSADM by the UK Government makes SSADM arguably the most
significant. This text provides an excellent introduction to the method.

Barker, R. (1990) CASE Method: Tasks and Deliverables, Addison-
Wesley, Wokingham.

This book is tied to ORACLE’s proprietary CASE method but gives a
good insight into a typical method of this type and thus complements
the SSADM text.

Evolutionary not revolutionary change

6.1 INTRODUCTION

This chapter discusses the problems and pitfalls of introducing new
technology into an organization. In particular, it focuses upon the
problems which can arise when introducing CASE tools and the methods
and approaches which accompany them into a new environment.

The chapter begins with a discussion of the problems of change, and
how to manage these, followed by two case studies. The chapter
concludes with a summary of the lessons learnt from these two case
studies, and some pointers towards the important factors to be taken into
account when introducing change into any organization.

6.2 MANAGEMENT OF CHANGE
6.2.1 Dealing with change

Introducing new technology into any organization can often lead to
problems and difficulties. The organization concerned will already have
its own set of procedures, working practices, methods and ways of doing
things. There will be staff in the company who have been trained in
particular ways of working and may, therefore, resist changing to any new
ideas and the use of new technology. There may be existing equipment
which is to be replaced and superseded by the new technology; these may
be computers or other new types of hardware.

Whatever the reasons, there will nearly always be a reluctance to any
form of change. The greater the change, the greater will be the resistance.
This, of course, is human nature to some extent. This can be illustrated by
a simple example.

Consider that you are safe at home indoors in your lounge. You are
sitting by the fire watching the television. You are warm, comfortable,

74 Evolutionary not revolutionary change

secure and contented. You are wearing light clothes and your carpet
slippers. Your lounge is at a warm, steady temperature. You are in an
environment with which you are familiar and you have nothing to fear or
worry about.

Suddenly you are transported to an Arctic wasteland. You are
surrounded by nothing but the bleakness of white snow. A blizzard howls
around your head. You still wear only your light clothing. You are lost,
freezing and terrified but you know that you must do your best to cope
within this new environment. You will search for shelter and try, as best
you can, to find a way to keep warm. This is a basic human instinct; we
will always try to find a way to protect ourselves and to survive (if, of
course, survival is possible in such a bleak scenario!).

1one moment..—

Fig. 6.1 Extreme example of revolutionary change.

This is a (rather extreme) example of revolutionary change. The
individual in this nightmare scenario has been transported to a totally
different and alien environment and left to cope as best he/she can. You
will, of course, think that such an example is too extreme and that such
change situations can never happen. That is true; but the equivalent
change situations in terms of work environments can be surprisingly
commonplace. That is, quite large and severe changes are often put into
place quite quickly with little thought for the consequences to the
organization and the individuals who work within it.

Management of change 75

Such extreme change is, without a doubt, a recipe for disaster. Let us
reconsider the above scenario, but this time take an evolutionary
approach to the change.

You are again safe at home indoors in your lounge. Once again you
are sitting by the fire watching the television. This time the telephone
rings. You answer the telephone and hear the voice of your boss, who
invites you to his office the next morning to discuss an important
assignment for the magazine for which you write.

The next morning you arrive early at the office. Your boss is waiting
for you and he invites you into his office. He shakes your hand, makes
sure that you are comfortable and asks his secretary to give you a cup of
coffee. ‘Now, Desmond’ he begins. ‘I have a very important assignment
for you. It is very important to the company but it is also very different to
what you are used to and might, at first, seem a little strange. However, I
hope that you will hear me out and then you will realise why I feel that
you should do it.’

He continues, ‘I need someone to write a piece on the conditions in
the Arctic. It is something that we’ve tried to cover before but we’ve
never really succeeded because none of our writers have really
experienced the climate and the situation there. To remedy this we’d like
to send you to the Arctic to get the inside story on what it’s really like to
be there.’

At first this seems a crazy but intriguing idea. You are quite
concerned about how this assignment will work out. Your boss assures
you that you will undergo a full training programme before making the
trip to the Arctic. You will be supplied with all the necessary clothing and
equipment. You will be given some simulated experience of cold climates
before you go there. You will undergo thorough medical examinations
before you start out. You will be trained in survival techniques and so on.
Your boss has really thought this through beforehand and tried to cover
everything.

However, he finishes by adding, ‘I feel that it is important that we
also consider carefully your views and feelings in such an important, and
new, assignment. So have a good think about it, and let me know if there
is anything that you feel I’ve missed and any other ways that we can
prepare you for the project. For it to work well, we need your full
commitment, interest and enthusiasm. I’d like us to work closely together
on this one.’

76 Evolutionary not revolutionary change

So, in this scenario, when you are arrive in the Arctic wasteland, you
are prepared. You have undergone training, you have covered everything
properly before making the change. The acclimatization programme
which you have undergone has ensured that the climatic change is, to
some extent, gradual, and does not come as an extreme shock to your
system. The change has been engineered in an evolutionary manner,
rather than a revolutionary manner.

Although the above example is somewhat extreme and unlikely, it
does illustrate a number of important points:

* Change should be made in an evolutionary, iterative and gradual
manner.

« Revolutionary change is a recipe for disaster.

» If the objectives of the change are explained carefully to staff, and
they can see the benefits to be gained, they are more likely to accept it.

* If you can gain staff commitment to change, that change is more likely
to succeed.

* People factors are the most important in any change scenario.

The last point is very important. If any organization needs to make
major changes they must get the people in that organization on their side.
This will involve:

 Staff training. A full training programme should be put into place so
that all staff are prepared for the impact of the change.

* Negotiation with trade unions may be necessary. This is particularly
true where retraining or redundancy is planned.

» Redesign of all procedures, manuals and systems connected with the
change.

Fig. 6.2 illustrates the difference between revolutionary and
evolutionary change. Revolutionary change is a sudden step change
which takes a system from one state into another. The results of such a
sudden change are:

¢ severe shock to the system;

Management of change 77

 staff dissatisfaction, discontent and dismay;
* high cost of investment in capital equipment;

* problems and perhaps even failure!

Change

Worst case: big bang
Ideal case: smooth change

Practical implementation:
change in small incremental steps

Time

Fig. 6.2 Evolutionary and revolutionary change.

The staff of any organization are the vital resource and their insecurity
in the face of revolutionary change may well be enough to prevent its
success. Even if the staff are able to be convinced, the ‘big bang’
approach does not allow for effective evaluation of each stage, and thus
no lessons may be learnt from each step before the next is taken.

It is almost inevitable that a step change will require a large capital
investment. It is difficult to predict the effectiveness of that investment
when so many factors are changing at once, any one of which could
affect the effectiveness of the investment. From a management
perspective, revolutionary change represents an uncontrolled step, which
cannot be realistically planned and managed.

The only case where such a step might be justified might be in an
organization where traditional values and practices were so entrenched
that only a violent shake-up could affect change. If this approach is
adopted, then a period of great uncertainty and trauma must be accepted
as an inevitable consequence.

Gilb (1988) records a graphic example of what can happen when a big
bang approach is adopted, in the context of introducing a global MIS,

78 Evolutionary not revolutionary change

known as the corporate information system, into a large motor
manufacturer.

Work had been running on the CIS for five years. It had a budget of
eighty work years.

The company had attempted to manage the project effectively. They
had:

» consulted the business management literature;

* carried out a feasibility study using external consultants for two
calendar years and fifteen work years;

* Dbought in the biggest and latest computer hardware and software;
 used structured methods for the project;

* paid up when the project ran over budget initially.

In spite of this, after five calendar years the project had consumed
twice its allocated eighty work years and was not contributing anything
useful. Worse, it was possible to show that the system would never be
able to handle the quantity of work required of it. To process the required
number of transactions in a day, the system would have to complete each
transaction in seconds. In practice, many transactions were taking
minutes.

The size and complexity of the system simply could not be swallowed
in a single chunk. Although this example is not concerned with the
introduction of CASE methods and tools, the same principles apply.

Fig. 6.2 also shows evolutionary change. In its ideal form, it is a
smooth, gradual process. In practice, it is likely that a practical realization
would consist of a series of small, iterative stages. Either way, both the
staff and the organization are eased into the changes in a much more
sensible and human manner. The results of the evolutionary approach are:

» staff commitment to the process (if it is explained correctly);
» gradual spreading out of cost over time;
» staff satisfaction;

* success!

Management of change 79

The evolutionary approach allows staff to adjust gradually to new
ideas. It also allows expenditure to be spread over a period. Above all, it
allows for proper planning beforehand and evaluation afterwards to allow
adjustment of the overall process.

The management of change is a subject in its own right with excellent
texts provided by Peters (1982, 1988) and Stacey (1990) amongst others.
These texts will provide detailed approaches to the management of
change. However, before a detailed approach to the management of
change can be adopted, there must be a recognition that the process
requires managing, and that change cannot simply be allowed to happen
in a random and destructive way. Many organizations only learn this the
hard way by experiencing the consequences of unmanaged and
unmanageable change.

Kliem and Ludin (1992) focus upon the ‘people’ side of change
management and stress the importance of preparing staff for any changes
which are to take place in their working environment. Failure to do so,
they warn, will result in resistance which may display itself as:

* high staff turnover;

high absenteeism rate;
* sabotaging change; or

 ignoring change and finding other ways of doing things.

They identify three distinct groups in any change scenario:
» the change target, who are the group of people whose working
practices are to undergo change.

* the change sponsor, who provides the resources to effect the change.

« the change agent, who implement the change.

Without question, the people are the most important factor to consider
when implementing any change scenario within an organization. The
importance of people is discussed further within the next chapter of this
text.

80 Evolutionary not revolutionary change

6.2.2 CASE technology

Introduction of CASE technology is no different to the introduction of
any other form of new technology. The arrival of CASE will be a
significant change, which will bring with it a new set of challenges and
problems. Such problems may include:

¢ fear of redundancy amongst staff;
» the need for adequate training;

* short term productivity losses;

loss of investment due to obsolescence;

the need for new hardware and software;

* justification to management.

There is a natural fear amongst staff that introduction of CASE may
lead to loss of jobs. Staff may feel that computerizing the software
engineering process will mean that the organization will need fewer
software engineers. The claims made by vendors about productivity may
fuel this fear. However, this is not the case. It should be made clear to
staff that the introduction of CASE will enable them to work in a more
productive and efficient manner, and will enable them to produce higher
quality software systems.

Training staff into the new way of working is essential. CASE tools
need to be learnt, as do the methods that go with the tools. Chapter 2 has
discussed how methods should come before tools. This is an important
part of the evolutionary change process.

Productivity may not rise immediately. There will be a learning curve
and a settling-in period. This should be expected and planned for. The
long term benefits should prove to outweigh considerably any losses
which are incurred in the short term or any investments in time which are
necessary to get the new CASE tools to work properly (and be used
effectively).

How can you be sure that the CASE product which you introduce will
not be out-of-date in a few years, and more change will be needed? This
is, of course, a real worry with the introduction of any new technology.
All-that.ene-can-de.is-be.careful.and,take your time when choosing a set
of CASE products.

Case studies 81

New hardware and software may be needed to run the new tools. This
will, in itself, require further change. This must also be planned and
budgeted for.

The cost of buying CASE tools, hardware and training may be
difficult to justify to management. That is, justifying the need for, and in
particular the cost of, change may be difficult. The long term benefits of
the introduction of such tools need to be stressed. Unfortunately, the lack
of many clear, quantified success stories often makes this a difficult part
of the process.

The problem of change concerning CASE is that we may ask staff to
adapt not only to large amounts of change but different types of change.
Staff may be asked to swallow change in software development methods,
tools, documentation, planning, estimation, management and team
working.

This degree of change may well prove impossible. Even where the
change is possible, keeping track of it in order to manage and guide that
change may still be impossible

Of course, introducing CASE should bring benefits and advantages as
well as problems; otherwise it would not be worth even considering the
introduction of CASE. The next section of this chapter describes two
success stories. These successes have been a direct result of an
evolutionary, as opposed to a revolutionary approach.

6.3 CASE STUDIES
6.3.1 Making it work in the end

This case study focuses on a manufacturing company which makes and
prints high quality cartons for the food industry. The company uses a
range of high technology equipment to print, cut, crease and glue the
cartons. The company employs 150 people and has a turnover of £10M.

The company employed a local software house to write a system for
sales order processing, estimating, stock control, etc. This system was
specified in quite an ad hoc manner in traditional ‘back of an envelope’
manner and written in BASIC to run on a minicomputer. Perhaps
unsurprisingly, the system did not quite match up to the expectations of
the company and certainly did not match all of their requirements.

For instance, the software did not cater for record locking and yet the
system:was-intended to-be-multi=user. The system never worked and was

82 Evolutionary not revolutionary change

very unreliable. Consequently ad hoc parallel manual systems were
developed by the company to cover the deficiencies of the system.

This rather ramshackle computerized and manual system was
inherited by the commercial manager. The senior management in the
company were not convinced that computers were of value to the
company (perhaps not surprisingly, given their previous experience).
They were, therefore, not keen to invest any more in computer systems.
The commercial manager, however, was convinced of the value of
computer systems. He became the ‘user champion’ and got permission
from the board to go ahead with a new computer system. They were fully
supportive once the decision to go ahead was made. On the basis of their
experiences a ‘softly, softly’ approach was adopted.

A grant was obtained from the Department of Trade and Industry and
a complete analysis of the requirements of the company was carried out
and documented. This requirements document contained a detailed
description of all the business processes in terms of data flow diagrams
and entity-relationship models along with examples of all documents
used in the manual system.

This requirements document was sent out to a variety of firms, to
enable them to put forward tenders for production of the system. Many
put forward off-the-shelf systems but on being asked to do detailed
demonstrations withdrew. Some firms submitted bespoke systems. One
of these actually employed personnel from the previous company as
contract programmers.

None of these firms were considered suitable by the company. The
consultant who had written the requirements specification was invited to
tender on the condition that maintenance support could be found. This
was arranged by buying accounts and payroll packages from a
minicomputer vendor who agreed.

The system was developed on an IBM PC using an applications code
generator. Using the requirements specification as a base, a prototype
system was developed. The prototype programs, screens and reports were
validated by the users in paper form. This was a very important part of the
development process. The company realized the mistakes it had made
previously and was determined not to make them again. Once the ‘paper
model’ had been agreed, the code was generated and the system was
tested by the users. This cycle was then repeated until all the users were
satisfied with the system. Parallel with the development, negotiations
were carried out and a minicomputer purchased.

Case studies 83

The COBOL code was ported over to the target machine, and then
compiled and tested. Because of the integrated nature of the system it was
decided to go ‘live’ on all the system, some 100 programs,
simultaneously. There was really no choice as the old system was
continually breaking down, had duplicate data and lost records, leading to
very low company morale concerning computing systems. The system
successfully went ‘live’ with very few problems and is now the
cornerstone of the company’s operations.

The system was designed for a company of £6M turnover. It went live
a year ago when company turnover was £8M and is still running this year
with a company turnover of £10M. The hardware has been upgraded and
now supports some 20 terminals and four printers. Users are actively
demanding further functionality as they realize the potential of the
computer system. The system is independent of any hardware supplier.
The system cost £100 000 for both hardware and software and took about
a year to develop and implement.

It is used by the commercial manager and his staff who are able to
provide up-to-date information to their customers. The system is also
used on the shop floor and there is a constant dialogue with the office
staff to ensure that orders are met on time. The factory works on a two
shift system because of the volume of work. The system also provides a
wide variety of management reports on raw material stocks (50% of cost
of product), finished goods, machine utilization, etc. The management
believes that in the long term this will enable them to manage the
company much more efficiently and effectively.

The company had a bad initial experience of IT, but it has learnt from
its mistakes. The lessons learnt have ensured that a successful system was
developed ‘second time around’.

6.3.2 An evolutionary engineering approach to developing
business systems

This case study concerns a company within the textile industry. In the late
1970s and 1980s, the company was in deep recession. However, in more
recent times the company had achieved considerable improvements due
to the successful implementation of a recovery plan.

The nature of the group is diverse and covers many sectors of the
textile industry. This leads to a demand for information systems to reflect

84 Evolutionary not revolutionary change

the diversity of processes, size and methods of control for the companies
in the group.

In 1984, the group attempted to meet the demand for systems in the
conventional manner of preparing a definition of requirements and
selecting packaged software to meet these requirements. Unfortunately,
this project both failed to produce benefits and to meet expectations of
time scale and cost. In view of this traumatic experience, the board
commissioned a team of consultants to assist the information systems
department in a strategy review.

The diversity of a large de-centralized textile group posed a
significant challenge for information technology. Following a detailed
review of the experience of the group, the principles for the development
of an information technology strategy were defined as:

* to provide systems suitable for each industry sector and size of
company;

* to consider the adoption of packages, where applicable;

» to control IT costs through a policy of standard hardware, operating
system and development methods.

A review of alternative strategies was conducted against these
principles. It became apparent that the route of implementing packages
(either single or multiple) was impractical. The alternative of allowing
each operating unit to select their systems was too expensive in capital
and revenue terms, and the development of bespoke systems using
conventional languages could not meet realistic targets for cost and time
scale.

Attention was therefore turned to the use of 4GLs and, in particular,
the Progress Software Corporation’s PROGRESS Language. This was
chosen for its productivity, facilities robustness, reliability, operational
features, portability and cost and because it provided a single integrated
environment for the whole application.

The potential drawback was that there was little practical experience
and support within the UK, and consequently there were attendant risks
of relatively unproven performance in the field. It was felt, therefore, that
the feasibility of the method should be established with a pilot project.

A specification was prepared for a stock control and material
traceability system. A clear definition of the objectives, milestones and
project control methods was established prior to commencement. These

Case studies 85

objectives were used to prove the performance claims of PROGRESS
both in development and operation of a system.

An objective of a 50% reduction in development time was set and the
programming effort using conventional languages was estimated. The
time spent on every activity was recorded against the estimate and all
objectives were met, with many being improved upon dramatically. In
addition a number of other benefits in terms of ability to prototype,
robustness, user friendliness and ease of future enhancement and
maintenance became apparent. These would result in greater cost savings
in the future. The capability of the 4GL to be used for prototyping was
impressive and had clear benefits in guiding inexperienced users to
definitions of their requirements.

The objective of the project was to produce fully integrated business
systems for the decentralized operating companies in the group. It was
considered that certain key elements were required by all companies and
a specification was raised against this. This ‘core’ system was developed
using the 4GL and used as a prototype to demonstrate to the companies in
the group. Various packages written in PROGRESS were integrated with
the core system. The demonstration of the prototype was used to assist
users in producing a formal definition of their requirements. The
conventional process of producing operating procedures, staff training,
data capture and pilot running was followed leading to the
implementation of the system.

For each industry sector a ‘major’ site was nominated at which
extensive analysis was undertaken. A ‘reference’ site was used for each
sector to check the findings from the major site. It was recognized that for
the pilot project that there was a need to introduce a methodology and
Structured Systems Analysis and Design Methodology (SSADM) was
selected. However, the belated introduction of a methodology initially
slowed project progress. A more significant delay was caused by
problems of recruitment and a training scheme was introduced.

Each company was requested to form a working party which provided
the forum for discussion of the findings and initial design specifications
and a method of communicating with end users. A Business Systems
Definition (BSD) was produced using techniques from within SSADM
and was ‘indexed’ by a Problem/Requirement list which identified where
and how a solution was proposed. At this stage, the working party was
requested to agree that data and functionality were correct in principle.

86 Evolutionary not revolutionary change

Following this agreement in principle, the normalization techniques of
SSADM were used to produce the Database Schema, on which an
independent review was carried out, from which it was concluded that the
database was an efficient base on which to work. Programming of the
core, despite the systems complexity and other daily commitments,
exceeded the target set and project slippage was reduced. Programming
of the major programs was also carried out at this time and system testing
undertaken in parallel with this programming.

Working parties from all 12 companies in the group were given
presentations of the system, which were followed up by workshops where
end users and their managers were requested to use their own data and as
many problem scenarios as they could envisage. Despite higher levels of
work than anticipated there was a lower level of enhancement and
milestones continued to be met.

At this stage, two representative sites were chosen for the initial
‘pilot’ running and testing of the database and programs. This process led
to no functional or data changes but some enhancements were necessary
to improve user friendliness. This was followed by ‘live’ operation at the
two representative sites while at the same time ‘pilot’ operation was
underway at two other companies within the group in preparation for
‘live’ operation. Implementation of the remaining companies was planned
at the rate of two per quarter.

Targets were set in two major areas to assess the success of the
project. These were considered to be the improvements in time scale, cost
and quality of the systems produced and the resultant improvements in
performance of the operating companies. A number of objectives were
set by the operating companies for the purposes of monitoring the success
of the project and each site set a monetary value on these savings to
enable performance to be measured.

Within a diverse group the adoption of these methods allowed
modern, effective information systems to be more readily accepted and
used by staff in the operating units.

The use of a fourth generation language, in this case PROGRESS,
brought a number of advantages. A simple 4GL language could have
been used to offer the same facilities on UNIX and MSDOS based
machines. Improvements in productivity during the coding phase were
estimated to be at least 50% for ‘complicated’ programs and far greater
for simple enquiries and reports. However, some of these improvements
tended tobe traded off -against producing systems of higher quality.

Case studies 87

Hence, future maintenance and enhancement were simplified and system
testing was found to be quicker.

There were benefits in the area of staffing, too. Training of new staff
without 4GL experience was found to be speedier. A staff structure based
on Analyst/Programmers, rather than segregation of the two disciplines,
proved to be more effective with the introduction of a fourth generation
language and resulted in a smaller department.

The use of prototyping and piloting was very valuable. The
combination of these approaches improved communication and
understanding of the system.

A cost effective, cohesive and rational approach was taken to
development methodologies, operating systems, hardware and
applications resulting in cost savings. Effective systems were provided at
a cost equivalent to 3.5% of turnover. These systems required just 10
staff to service all 12 companies. The resulting lower cost systems
allowed IT to be applied to operating units where it would otherwise be
uneconomic.

However, a number of lessons have been learnt from the experience:

» The company found that it was essential to have a good analysis and
design methodology, otherwise it is difficult to move from the
prototype to the production model. A CASE tool should be considered
to support the methodology.

e As a result of their experiences, the company felt that prototyping
must be used with caution. A balance must be struck between the
benefit of prototyping and the need to have the database design ‘right
first time’. Good project control is even more essential as enthusiasm
for the facilities and prototyping can lead to ‘over designed’ solutions.

» It proved necessary to allow for the learning curve for ‘traditional
programmers’. Some of the traditional definitions of project phases
tend to become blurred, e.g. the aspect of training experienced during
the workshops. It is particularly important that all programmers
understand how the 4GL applies record locking or multi-user
problems may be experienced.

88 Evolutionary not revolutionary change

Finally, it was found that success could bring problems too. As users
saw the benefits reaped they tended to expand system boundaries by
using arguments that as the IT function could now respond quickly,
this ‘small’ request could be met.

6.4 SUMMARY

Any organization, whether it be in the public or private sector, will resist
change to a greater or lesser extent. That is, any organization will have:

staff who are trained in, and used to, particular working practices;

investment in existing hardware, whether this be in terms of computer
technology or machinery, etc.;

staff who fear that any change may threaten their job security;

reasons (whether or not they be sensible ones!) for keeping current
practices and systems and not wishing to take even the first steps of
any large change.

The introduction of CASE technology is no different in this respect.

The important points to remember when introducing CASE into an
organization are as follows.

Change should be made in an evolutionary, iterative and gradual
manner.

Revolutionary change is a recipe for disaster.

Get staff commitment: this is vital.

People are the most important factor in any change scenario.
Effective staff training is essential.

Productivity may not arise immediately but long term benefits must be
realized.

New hardware and software must be planned and budgeted for.

Cost justification is important but may be difficult to put together.

Further reading 89

FURTHER READING
Peters, T. (1988) Thriving on Chaos, Macmillan, London.

Peters, T. and Waterman R. (1982) In Search of Excellence, Harper and
Row, London.

Stacey, R. D. (1990) Dynamic Strategic Management for the 1990s,
Kogan Page, London.

These texts provide detailed approaches to the management of
change.

Gilb, T. (1988) Principles of Software Engineering Management,
Addison Wesley, Wokingham.

This text provides an excellent text on the use of evolutionary
techniques in software development.

People matter

7.1 THE STAKEHOLDERS

Many innovations in the area of automation and computerization seem
paradoxically to lead to a greater emphasis upon the human and manual
processes they seek to replace. For example, many of us are familiar with
the environmentally friendly paperless computerized office:

N

Fig. 7.1 The computerized ‘paperless’ office.

Whilst it might appear that CASE tools provide an increase in automation
and therefore should decrease the significance of the human role in the
process, the reverse appears to be true. The increase in technical
sophistication requires more careful management, the large initial outlay
requires enthusiastic senior management backup and belief and the re-
training commitment requires the co-operation of the system developers.

The stakeholders 91

To maximize the chances of success, it is necessary to recognize the
different stakeholders in the software development process and their
aspirations. These are summarized in Table 7.1.

Table 7.1 Stakeholders in the software development process

Stakeholder Aspirations and fears

Customer Wants a system with fewest errors that does what
they want at the lowest price in the shortest time
Fears that they may end up paying for expensive
tools

Tool user Wants a tool that makes their job easier, more

Project manager

Quality manager

Senior management

satisfying and more productive

Fears that tools may lead to de-skilling and
redundancy

Wants to deliver on time with fewest errors and to
satisfy the customer

Fears that change may disrupt the time scales and
cause problems with the staff

Wants to ensure that the delivered system is error-
free and meets the aspirations of the customer

Fears that the new tool may reduce the
individual’s attention to detail

Wants to see a return on investment

Wants to see an increase in productivity and
quality

Fears that this may be another IT white elephant

In this chapter we shall consider how each of these desires and fears
can be addressed, and then consider some examples where people issues
were critical for one reason or another. Later, in Chapter 8, we shall
return to some of the themes discussed here and consider the corporate
and strategic implications.

92 People matter

7.1.1 Customers

To consider the role of the customer in the success or otherwise of the
adoption of CASE tools let us return to the reason for adopting tools and
methods in the first place. Boehm’s work (1981) on the cost of
maintenance as a function of the software lifecycle shown in Fig. 2.4, is
often used to justify CASE as a solution to the ‘software crisis’.

Estimates of the percentage of the software development budget spent
on maintenance vary substantially, but it is generally agreed that this
figure is far too high, and that by improving the quality of the software
development process the number of errors can be reduced. In particular,
by eliminating errors earlier in the lifecycle, the cost of fixing errors can
be reduced.

The means of achieving this improvement, it is suggested, is the
adoption of CASE tools and methods. Whilst there are clearly benefits to
be gained in this area, a little care is needed in assessing their impact.

Consider first the number or errors. What is maintenance?
Maintenance effort is required when the system fails to perform in the
way that the customer wants. This may arise from one of two cases:

e Non-conformance to specification. The code departs from its
specification in performance. This corresponds to your traditional
‘bug’.

» Inaccurate specification. The specification does not accurately reflect
the needs of the customer.

Structured methods were introduced originally to deal with the first
type of problem through the management of complexity. Their modern
counterparts, the methods at the heart of CASE tools, still reflect this.
There is an increasing awareness that much of the maintenance effort
arises from inaccurate specifications rather than coding errors. As CASE
tools improve and move towards better automated code generation, this
will become even more apparent.

These problems arise because of a lack of communication between the
system designers and the system users, illustrated in Fig. 7.2. The extent
of this problem was highlighted by one of the authors in a study which
showed that in the large companies visited, there was little or no dialogue
between systems providers and system users (Gillies, 1992a).

The stakeholders 93

Qu'est-ce que c'est? ™
Je ne comprends pas

/What we
"need is a mega
byte flipflop
_ transducer

Fig. 7.2 Communication is crucial in establishing customer needs.

Some CASE vendors have suggested that the diagramming tools
provided with their products can provide a media for meaningful
communication between customers and developers. This idea has been
tested by one of the authors with little success. Whilst an entity-
relationship diagram, for example, provides a useful representation for a
system developer, it is not generally understood by non-technical
personnel. The nature of an information model has little meaning for
them.

What has been shown to be useful are rapid prototyping tools which
provide a quick and easy way to show customers the look and feel of the
product. This can further provide a basis for discussion which, if properly
handled, can draw from the user much useful information beyond simple
look and feel. Unfortunately, some CASE vendors seem to regard such
tools as peripheral at best to the main toolset provided.

Long term wuser satisfaction depends more upon a deeper
understanding of the needs of users and their problem. However, the
problem. is.not essentially one.of technology; it is one of motivation on
the part of the system developer. They need to recognize that the

94 People matter

customer has knowledge of the problem and the requirements of the
system which can save much time in the longer term. This need to get the
specification right at the start has been highlighted by Boehm (1981) in
his graph of the cost of fixing an error as a function of the stage of the
development life cycle, cited in Part One.

Thus errors fixed or prevented at the analysis phase represent a huge
saving for the company. Although, with the arrival of automated code
generation and other CASE tools, the fixing of errors later in the life
cycle has become easier and cheaper, prevention rather than cure is still
the best choice for cost control and customer satisfaction.

Errors arising from incorrect implementation of the specification
leading to system crashes or bugs are just as irritating to the customer as
errors in the specification itself. CASE tools and methods have the
potential to make a significant impact here. In particular, the use of
automated code generation offers the possibility of an error-free
representation of the specification in code. Again, this is yet to be
realized in practice, but continuing improvements in technology make
this a realistic possibility.

In this analysis thus far we have considered the customer as a
homogeneous group. However, the customers may be classified in two
ways, as shown in Fig. 7.3.

Internal | External

User

Manager

Fig. 7.3 Customer matrix.

a) Internal vs. external customers

The principal advantage of the customer being inside the organization is
that there would appear to be a greater opportunity to develop a co-
operative relationship between system developers and system users. This

The stakeholders 95

should provide better systems for the users and more understanding of the
needs of the system developers in providing such.

However, a study of such organizations (Gillies, 1992a) reveals that
this is simply not the case. There appears to be a complacency in the
attitude of many such departments towards their customers.

This is reinforced by other work (Davis et al., 1993) looking at the
adoption of systematic quality assurance procedures which showed that
the percentage of companies supplying IT systems and services to
external customers adopting certificated quality procedures is
considerably higher (58%) than in internal information systems
departments (12%).

The suppliers providing systems to external customers have to be seen
to be trying to overcome their natural disadvantage in knowledge of the
customers’ business. However, whether this is a genuine concern and
whether there is time in the average contract to gain sufficient
understanding remains to be seen.

b) Users vs. managers

The second distinction which must be made amongst customers is
between users and managers. Whilst both have interests in common, their
priorities tend to be different. The manager customer has more power in
the overall process. They want a successful outcome but are constrained
by factors of budget and time and often therefore take a shorter term view
of what is required.

The user of the end system is more concerned with long term
satisfaction and is therefore more willing to accept a longer time scale if
it results in improvements to the system. However, they often have little
say in the process and this can lead to problems in the longer term as
managers accept compromise to get a system in place on time and within
budget.

7.1.2 Tool user

The user of the tool may not be very enthusiastic about it. This negative
response may arise from one of a number of reasons:

96 People matter

e Fear;

¢ Resentment;

* A perceived lack of training.

These are illustrated in Fig. 7.4.

Fig. 7.4 Reasons for a negative response.

Any change is likely to inspire insecurity. The introduction of automated
or semi-automated tools to the software development represents for the IT
community what the IT community has been doing for years to other
people. Therefore, the system developers know the likely outcome.

The general reasoning behind the introduction of tools and methods is
that it will increase productivity. Potentially, if this is realized, then this
may reduce the need for programmers and result in redundancies. This
provides a basic insecurity regarding the introduction of the technology.

Additionally, there is an implicit reflection upon the professional
integrity of the personnel if the tools and methods are being introduced to
address a perceived problem. Whilst it is not possible to eliminate these
fears and insecurities completely, it is essential to gain the co-operation
of the people who are going to use the tools and this may be assisted by a
conscious attempt to manage their anxieties.

First of all, there must be adequate explanation and training. No
amount of accurate information is as intimidating as a lack of
information. The training should emphasize three messages.

The stakeholders 97

The first is that the tools are simply there to enable them to make
better use of the underlying methods and to automate the tedious parts of
their job. The system has a decision support role rather than a decision-
making role. They should make life easier and the tool never takes away
the need for judgement and expertise.

The potentially greater threat to their current working practices lies in
the underlying method. Therefore, the second point to be made is that the
CASE methods represent not a revolution in software design but an
evolution from the existing structured methods of which they almost
certainly are already aware.

The final message should perhaps not be communicated so forcefully.
To address the concerns of staff regarding de-skilling and professional
integrity, it may be pointed out that developers familiar with state of the
art tools and methods are a highly valued resource within the market
place and that this change may greatly enhance their professional
development. If this point is made too vigorously, it may lead to problems
for the project manager, considered below.

7.1.3 Project manager

The project manager has perhaps the most difficult job of all. They have
to balance the pressures from all sides without having the overall
authority of their more senior management colleagues (Table 7.2).

Table 7.2 The project manager’s dilemma

Stakeholder Expectation of the project and project manager

Managing customer They want the project on time in budget and
working

User customers They want a system which meets their aspirations
and needs

Development staff They want to be left to do their job

Quality manager They want the system to conform to their quality
procedures

Senior management They want the introduction of the CASE methods

and-tools to go smoothly

98 People matter

They carry much of the responsibility but have little ultimate authority.
They may well regard the introduction of CASE tools as another pressure
imposed upon them.

The role of the project manager is to try to ensure that all interests are
represented and that a proper balance is achieved between the different
factors. They must balance the short and the long term view. The short
term view says that the project must be completed on time and that this
must take priority over all other factors. The longer term view says that
the tools and methods must be properly integrated into working practice
and that the project must be satisfactory in the longer term.

They must balance the need to keep their project team happy and
motivated whilst ensuring that the required level of change is introduced.
Further, they must endeavour to ensure continuity of staff so that
expertise gained is retained.

As Fig. 7.5 illustrates, if they fail there are plenty of people waiting to
pounce. Finally, the project manager must be absolutely convinced of the
merits and benefits of the methods, tools and management procedures
adopted. Otherwise they will find it impossible to convince the others.

Prostf
/1A

g

Fig. 7.5 The project manager is pulled in many different directions.

The stakeholders 99

7.1.4 Quality manager

e
\/

| WOT, NO QUALITY
MANAGER?

Fig. 7.6 40% of companies surveyed had no QA function at all.

Many companies probably do not have a quality manager! In a recent
survey (Davis et al., 1993), over 40% of companies did not even claim to
have a QA function for software development. However, it is to be hoped
that the companies considering CASE tools and methods are among the
more enlightened.

Like the project manager, the quality manager must also balance short
and long term goals. In the long term, their job concerning the
implementation of CASE is to integrate the new working methods and
practices into an overall scheme which will provide improved quality to
the customer. The introduction of CASE methods and tools should in the
long term assist in at least some areas of quality.

However, the short term effects are likely to be quite the reverse.
Disruption of existing practice will result in longer time scales reflected
in slower delivery to the customer. Unfamiliarity with tools in the short
term is likely to increase errors and bugs. New working practices may
invalidate existing acquired wisdom on quality issues.

The quality manager should be a useful resource in what is a difficult
time for the organization. They should have experience of managing
change and introducing new working practices.

In any organization where thought has been given to improving the
quality of software, the introduction of CASE tools and methods should
be seen as part of the process of continual improvement. In fact, this is
true of any organization. In an organization without a quality
improvement process, the introduction of a CASE method and tool can
only have a limited impact.

100 People matter

7.1.5 Senior management

‘The future of this company is IT. | am behind you 100%.'

il

Fig. 7.7 A lack of genuine senior management support can kill any project.

In any innovation within an organization, the support of senior
management is crucial. Everyone seems to have worked in an
organization at some time where an edict has come down from on high
only to be followed by practical experience that shows that it is a case
(CASE?) of ‘do as I say not as I do’. Nothing kills an innovation more
quickly than this senior management hypocrisy.

However, there are also specific reasons why CASE tools and
methods require particular support if they are to succeed. Principal
amongst these is the long time scale before benefits are realized. There
will be a period during which quality will fall, productivity will fall and
there will inevitably be pressure on management to reverse the changes
that have been made.

Only if the support for the new working practices goes right to the top
will the organization persevere with CASE at this stage. Other managers
within the organization simply do not have the authority to carry things
through. In particular, the project managers, if committed to the new
methodspthemselvesy;pmustafeelpthat in a crisis they will receive the
backing of the senior management.

Case studies 101

Fig. 7.8 Without senior backing other managers will not succeed.

The level of commitment of senior management may be gauged at the
start of the project if the short term problems are adequately presented. It
is disastrous to avoid these issues in presentations to senior management
in order to push the project through, as this support will evaporate at the
first sign of short term problems.

However, for senior managers themselves, there remains the
fundamental issue of whether they should support the adoption of CASE
and its associated investment. In simple terms, the answer is that CASE is
not an end in itself but a means to achieving better systems. It is therefore
only worthy of support as part of an overall strategy to enable the IT
function to meet business needs better. The content of that strategy is
discussed in Chapter 8.

7.2 CASE STUDIES
7.2.1 The pallet company

The first example is a successful company which produces wooden
pallets. It has at its disposal the resources of 35 people, 300 customers,

102 People matter

2000 stock lines, 11 items of manufacturing plant and approximately
£%M of employed financial resources. It has 1000 different pallet types,
produces 700 000 pallets per year giving a sales value of £3.5M and
operates a ‘just in time’ system for deliveries of pallets on demand.

The company, whilst being heavily involved in manufacturing,
believes it is a service operation. It is important to recognize that a pallet
is not just a pallet but part of the unit load. The unit load consists of the
design of the pallet for particular customers, the loads to be carried, the
shrink wrap, the securing method and the method of movement of the
pallet. It is the company’s commercial strategy to become the recognized
experts in the provision of efficient design and supply of unit load
equipment.

The company believes that IT has an integral part to play in the
realization of the commercial strategy. It also believes that it is necessary
that all people in the company are convinced of the benefits of IT, not
only to the company, but to their own personal development. To this end
the company has invested heavily in IT. They installed an off-the-shelf
accounting package in 1983. This was followed by the development of a
bespoke production control and costing system in 1985 and a customer
care system in 1987.

7.2.2 The systems

The production control and costing system was a bespoke system because
off-the-shelf packages available at the time would have required much
customization and a change in working practices. The system has
provided numerous benefits for the company and has amply repaid the
investment in its development. Profits have gone up 20% per year over a
five year period. The price of the bespoke system was similar to
off-the-shelf packages and the total system’s cost, hardware and software,
was approximately £30 000.

The customer care system contains all the information that relates
directly to the customer. If a member of staff is in telephone contact with
a customer all the information is immediately accessible to answer any
questions concerning the status of their orders. Working in tandem with
the customer care system, and integrated with it, is the management
information and forecasting system which takes information from the
customer care system and prepares a wide variety of analyses. These
analyses provide the company with information such as profitability of

Case studies 103

customers, sales people, products, industry sector, forecast against actual
sales, direct labour cost, materials cost and gross profit. The total system
cost, hardware and software, was approximately £40 000.

The bespoke systems were developed using a software prototyping
method. The problem was discussed between the system developer and
the managers and users. Software engineering methods were used to build
a model of the business. The model of the business consisted of a data
model (entity-relationship) and a process model (data flow diagram).
These graphical models were used as the main communication between
the company and the consultants. They helped to gain an understanding
of how the company worked before the construction of the computer
system started. The business model was then entered into a CASE tool
called SOURCEWRITER, which generated the computer software. The
computer software was then used by the users to ensure it was producing
what was required.

After further discussion between the users and the systems developers
the business model was altered and the cycle repeated. The verification
loop to the system designer ensures that the system is built correctly,
whilst the validation loop between the software and users ensures that the
right system is built. This development method, using a CASE tool,
guarantees that the engineered softwar